PRACTICE PROBLEMS ON DIFFERENTIATION USING CHAIN RULE

Problem 1 :

y = (x3 + 3)5

Solution :

y = (x3 + 3)5

dy/dx = 5(x3 + 3)4 (3x2 + 0)

= 15 x2(x3 + 3)

Problem 2 :

y = (-3x5 + 1)3

Solution :

y = (-3x5 + 1)3

dy/dx = 3(-3x5 + 1) (-15x4 + 0)

= -45x4 (-3x5 + 1) 

Problem 3 :

y = (-5x3 - 3)3

Solution :

y = (-3x5 + 1)3

dy/dx = 3(-3x5 + 1) (-15x4 + 0)

= -45x4 (-3x5 + 1) 

Problem 4 :

y = ∜(-3x4 - 2)

Solution :

y = ∜(-3x4 - 2)

Problem 5 :

Solution :

Problem 6 :

Solution :

Problem 7 :

Solution :

Problem 8 :

y = (3x3 + 1) (-4x2 - 3)4

Solution :

Since two terms are multiplying, we have to use the product rule to find the differentiation.

Let u = 3x3 + 1 and v = (-4x2 - 3)4

u' = 9x2 + 0 and v' = 4(-4x2 - 3)3(-8x - 0)

u' = 9x2 and v' = -32x(-4x2 - 3)3

dy/dx = uv' + vu'

= (3x3 + 1) (-32x(-4x2 - 3)3) + (-4x2 - 3)4 (9x2)

= -32x(3x3 + 1) (-4x2 - 3)3 + (9x2) (-4x2 - 3)4 

= x(-4x2 - 3)3 [-32(3x3 + 1) + (9x) (-4x2 - 3)]

= x(-4x2 - 3)3 [-96x3 - 32 - 36x3 - 27x]

= x(-4x2 - 3)3 [-132x3 - 27x - 32]

Problem 9 :

y = (x3 + 4)5 / (3x4 - 2)

Solution :

Since two functions are divided, we have to use the quotient rule to find the differentiation.

Let u = (x3 + 4)5 and v = (3x4 - 2)

u' = 5(x3 + 4)4(3x2 + 0)

u' = 15x2(x3 + 4)4

v' = (12x3 - 0)

dy/dx = (vu' - uv')/v2

Problem 10 :

y = ((x + 5)5 - 1)4 

Solution :

y = ((x + 5)5 - 1)4 

dy/dx = 4((x + 5)5 - 1)3 (5(x + 5)4 - 0) (1)

= 20[ (x + 5)5 - 1)3 (x + 5)4 ]

= 20(x + 5)4 [ ((x + 5)5 - 1)3 ]

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More