Problem 1 :
y = (x3 + 3)5
Solution :
y = (x3 + 3)5
dy/dx = 5(x3 + 3)4 (3x2 + 0)
= 15 x2(x3 + 3)4
Problem 2 :
y = (-3x5 + 1)3
Solution :
y = (-3x5 + 1)3
dy/dx = 3(-3x5 + 1)2 (-15x4 + 0)
= -45x4 (-3x5 + 1)2
Problem 3 :
y = (-5x3 - 3)3
Solution :
y = (-3x5 + 1)3
dy/dx = 3(-3x5 + 1)2 (-15x4 + 0)
= -45x4 (-3x5 + 1)2
Problem 4 :
y = ∜(-3x4 - 2)
Solution :
y = ∜(-3x4 - 2)
Problem 5 :
Solution :
Problem 6 :
Solution :
Problem 7 :
Solution :
Problem 8 :
y = (3x3 + 1) (-4x2 - 3)4
Solution :
Since two terms are multiplying, we have to use the product rule to find the differentiation.
Let u = 3x3 + 1 and v = (-4x2 - 3)4
u' = 9x2 + 0 and v' = 4(-4x2 - 3)3(-8x - 0)
u' = 9x2 and v' = -32x(-4x2 - 3)3
dy/dx = uv' + vu'
= (3x3 + 1) (-32x(-4x2 - 3)3) + (-4x2 - 3)4 (9x2)
= -32x(3x3 + 1) (-4x2 - 3)3 + (9x2) (-4x2 - 3)4
= x(-4x2 - 3)3 [-32(3x3 + 1) + (9x) (-4x2 - 3)]
= x(-4x2 - 3)3 [-96x3 - 32 - 36x3 - 27x]
= x(-4x2 - 3)3 [-132x3 - 27x - 32]
Problem 9 :
y = (x3 + 4)5 / (3x4 - 2)
Solution :
Since two functions are divided, we have to use the quotient rule to find the differentiation.
Let u = (x3 + 4)5 and v = (3x4 - 2)
u' = 5(x3 + 4)4(3x2 + 0)
u' = 15x2(x3 + 4)4
v' = (12x3 - 0)
dy/dx = (vu' - uv')/v2
Problem 10 :
y = ((x + 5)5 - 1)4
Solution :
y = ((x + 5)5 - 1)4
dy/dx = 4((x + 5)5 - 1)3 (5(x + 5)4 - 0) (1)
= 20[ (x + 5)5 - 1)3 (x + 5)4 ]
= 20(x + 5)4 [ ((x + 5)5 - 1)3 ]
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM