OPERATIONS WITH SCIENTIFIC NOTATION

To add or subtract problems with scientific notation, we have to make the exponents same.

Factor out the common exponent and add or subtract the values.

To multiply or divide problems with scientific notation, we have to multiply the numerical values and simplify the exponential part separately.

Note :

The answer should be in scientific notation.

Problem 1 :

(1.2 × 105) + (5.35 × 106)

Solution :

= (1.2 × 105) + (5.35 × 106)

In order to simplify further, we have to make exponents same.

1.2 × 105 = 0.12 × 101 × 105

By combining the powers using am  an = am + n , we get

= 0.12 × 10(1+ 5)

= 0.12 × 106

1.2 × 105 = 0.12 × 106  ------(1)

5.35 × 106 = 5.35 × 106   ------(2)

(1) + (2)

= (0.12 × 106) + (5.35 × 106)

= (0.12 + 5.35) × 106

= 5.47 × 106

Problem 2 :

(3.67 × 102) - (1.6 × 101)

Solution :

(3.67 × 102) - (1.6 × 101)

In order to simplify further, we have to make exponents same.

1.6 × 101 = 0.16 × 10× 101

By combining the powers using am  an = am + n , we get

= 0.16 × 10(1+ 1)

= 0.16 × 102 

3.67 × 102 = 3.67 × 102 ------(1)

1.6 × 10= 0.16 × 102  ------(2)

(1) - (2)

= (3.67 × 102) - (0.16 × 102)

= (3.67 - 0.16) × 102

= 3.51 × 102

Problem 3 :

(4.3 × 108) × (2.0 × 106)

Solution :

= (4.3 × 108) × (2.0 × 106)

To simplify further, we have to make exponents same.

2.0 × 106 = 0.02 × 10× 106

= 0.02 × 10(2 + 6)

= 0.02 × 108

= (4.3 × 108) × (0.02 × 108)

= (4.3 × 0.02) × 108

= 0.086 × 108

= 8.6 × 108-2

= 8.6 × 106

Problem 4 :

(7.8 × 103) / (1.2 × 104)

Solution :

= (7.8 × 103) / (1.2 × 104)

To simplify further, we have to make exponents same.

7.8 × 10= 0.78 × 10× 103

= 0.78 × 10(1 + 3)

= 0.78 × 104

(7.8 × 103) / (1.2 × 104) = (0.78 × 104)/(1.2 × 104)

= (0.78/1.2) × 104 + 4

= 0.65 × 108

= 6.5 × 108-1

= 6.5 × 107

Problem 5 :

Evaluate the expression using two different methods. Write your answer in scientific notation. 

a)  (2.74 × 107) + (5.6 × 107)

b)  (8.3 × 106) x (3.4 × 105)

c)  (5.1 × 105) × (9.7 × 105)

d)  (4.5 × 104) × (6.2 × 103)

Solution :

a)  (2.74 × 107) + (5.6 × 107)

2.74 × 107 = 27400000

5.6 × 107 = 56000000

= 27400000 + 56000000

= 83400000

b)  (8.3 × 106) x (3.4 × 105)

= 8.3 x 3.4 × 106  105

= 8.3 x 3.4 × 106+5

= 28.22 x 1011

Since we have power 11, we have to move the decimal 11 digits. We have two digits after the decimal. Then we have to write 9 more zeros.

= 2822000000000

c)  (5.1 × 105) × (9.7 × 105)

= 5.1 x 9.7 × 105  105

= 5.1 x 9.7 × 105+5

= 49.47 x 1010

Since we have power 10, we have to move the decimal 10 digits. We have two digits after the decimal. Then we have to write 8 more zeros.

= 494700000000

d)  (4.5 × 104) × (6.2 × 103)

= 4.5 x 6.2 × 104 × 103

= 27.9 × 104+3

= 27.9 × 107

= 279000000

Problem 6 :

How many times greater is the thickness of a dime than the thickness of a dollar bill?

operation-with-scientific-notation-q1

Solution :

Thickness of coin = 0.135 cm

Thickness of note = 1.0922 x 10-2 cm

0.135 / 1.0922 x 10-2 

= 0.1236 x 10

= 12.36

So, the thinck ness of dime coin is 12 times of dollar bill.

Problem 7 :

Evaluate the expression. Write your answer in scientific notation.

a) 5,200,000 × ( 8.3 × 102) − (3.1 × 108)

b) (9 × 10−3) + (2.4 × 10-5) ÷ 0.0012

Solution :

a) 5,200,000 × ( 8.3 × 102) − (3.1 × 108)

= 5.2 x 106 x ( 8.3 × 102) − (3.1 × 108)

= 5.2 x 8.3 x 106 x 102 − (3.1 × 108)

= 43.16 x 106+2 - (3.1 × 108)

= 43.16 x 10- (3.1 × 108)

= 4316000000 - 310000000

= 4006000000

= 4.006 x 109

b) (9 × 10−3) + (2.4 × 10-5) ÷ 0.0012

= 0.009 + (2.4 × 10-5) ÷ 1.2 x 10-3

0.009 + (2.4 / 1.2) × 10-5/ 10-3

0.009 + 2 × 10-5+3

0.009 + 2 × 10-2

= 0.009 + 0.002

= 0.011

Problem 8 :

Find the perimeter of the rectangle.

operation-with-scientific-notation-q2.png

Solution :

Area = 5.612 × 1014 cm2

Length = 9.2 × 107

Width = 5.612 × 1014 9.2 × 107

= 5.612/9.2 × 1014 x 10-7

= 5.612/9.2 × 1014 x 10-7

= 0.61 × 1014-7

width = 0.61 × 107

Perimeter = 2(length + width)

= 2(9.2 × 107 + 0.61 × 107)

= 2(9.81 × 107)

= 19.62 × 107

= 1.962 × 107-1

= 1.962 × 106

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More