OPERATIONS WITH FACTORIALS PERMUTATION AND COMBINATION

Evaluate the following

Problem 1 :

(a) 6!

Solution:

6! = 6 × 5 × 4 × 3 × 2 × 1

= 720

(b) 10!

Solution:

10! = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1

= 3628800

(c) 11!

Solution:

11! = 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1

= 39916800

(d) 5P

Solution:

5P2=5!(5-2)!= 5!3!= 5×4×3!3!= 5×4= 20

(e) 12P4

Solution:

12P4=12!(12-4)!= 12!8!= 12×11×10×9×8!8!= 12×11×10×9= 11880

(f) 20P5

Solution:

20P5=20!(20-5)!= 20!15!= 20×19×18×17×16×15!15!= 20×19×18×17×16= 1860480

(g) 6C2

Solution:

6C2=6!(6-2)! 2!= 6!4! 2!= 6×5×4!4! (2×1)=6×52 =15

(h) 12C5

Solution:

12C5=12!(12-5)! 5!= 12!7! 5!= 12×11×10×9×8×7!7! (5×4×3×2×1)=12×11×10×9×85×4×3×2×1 =792

Evaluate the following

Problem 2 :

(a) 5P5

Solution:

5P5=5!(5-5)!= 5!0!= 5×4×3×2×11= 120

(b) 100P4

Solution:

100P4=100!(100-4)!= 100!96!= 100×99×98×97×96!96!=100×99×98×97= 94109400

(c) 10C10

Solution:

10C10=10!(10-10)! 10!= 10!0! 10!= 1!0!= 1

(d) 100C2

Solution:

100C2=100!(100-2)! 2!= 100!98! 2!= 100×99×98!98! (2×1)= 100×992= 4950

(e) 1001C999

Solution:

1001C999=1001!(1001-999)! 999!= 1001!2! 999!= 1001×1000×999!(2×1) 999!= 1001×10002= 500500

Problem 3 :

Show that 20C6 = 20C14

Solution:

20C6=20C1420!(20-6)! 6!=20!(20-14)! 14!20!14! 6!=20!6! 14!20×19×18×17×16×15×14!14! (720)=20×19×18×17×16×15×14!14! (720)27907200720=2790720072038760=38760

Problem 4 :

Evaluate:

(i) 4P2

Solution:

4P2=4!(4-2)!= 4!2!= 4×3×2!2!= 4×3= 12

(ii) 6P3

Solution:

6P3=6!(6-3)!= 6!3!= 6×5×4×3!3!= 6×5×4= 120

(iii) 4P3/3P2

Solution:

4P33P2=4!(4-3)!3!(3-2)!= 4 × 3 × 2 ×11!3 × 2 × 11!= 4×3×2×13×2= 4

(iv) 6P3 × 5P2

Solution:

6P3×5P2=6!(6-3)!×5!(5-2)!= 6!3!×5!3!= 6×5×4×3!3!×5×4×3!3!= (6×5×4)×(5×4)= 120×20= 2400

(v) nPn

Solution:

nPn=n!(n-n)!=n!0!= n!1= n!

Problem 5 :

Verify each of the following statements:

(i) 6 × 5P2 = 6P2

Solution:

6 × 5P2 = 6P2

6×5!(5-2)!=6!(6-2)!6×5!3!=6!4!6×(5×4×3!)3!=6×5×4!4!6×5×4=6×5120 = 30

So, the given statement is false.

(ii) 4 × 7P3 = 7P4

Solution:

4 × 7P3 = 7P4

4×7!(7-3)!=7!(7-4)!4×7!4!=7!3!4×(7×6×5×4!)4!=7×6×5×4×3!3!4×7 ×6×5=7×6×5×4840 = 840

So, the given statement is true.

(iii) 3P2 × 4P2 = 12P4

Solution:

3P2× 4P2 = 12P4

3!(3-2)!×4!(4-2)!=12!(12-4)!3!1!×4!2!=12!8!(3×2×1)1×(4×3×2!)2!=12×11×10×9×8!8!6×12=12×11×10×972=11880

So, the given statement is false.

(iv) 3P2 + 4P2 = 7P4

Solution:

3P2 + 4P2 = 7P4

3!(3-2)!+4!(4-2)!=7!(7-4)!3!1!+4!2!=7!3!(3×2×1)1+(4×3×2!)2!=7×6×5×4×3!3!6+12=7×6×5×418=840

So, the given statement is false.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More