Polar form of a complex number will be
z = r(cos θ + i sin θ)
Rectangular form will be
z = x + iy
Let two complex numbers represented in rectangular form,
a + ib and c + id
Let z1 = a + ib and z2 = c + id
Adding complex numbers in rectangular form :
z1 + z2 = a + ib + c + id
= (a + c) + i(b + d)
Subtracting complex numbers in rectangular form :
z1 - z2 = (a + ib) - (c + id)
= (a - c) + i(b - d)
Multiplying complex numbers in rectangular form :
z1 x z2 = (a + ib) x (c + id)
= ac + iad + ibc + i2bd
= (ac - bd) + i(ad + bc)
Dividing complex numbers in rectangular form :
z1 / z2 = (a + ib) / (c + id)
Multiply both numerator and denominator by the conjugate of the denominator.
Let two complex numbers represented in polar form,
r1(cos θ1 + i sin θ1) and r2(cos θ2 + i sin θ2)
Let z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2)
Multiplying complex numbers in polar form :
z1 x z2 = r1(cos θ1 + i sin θ1) r2(cos θ2 + i sin θ2)
= r1 r2 [cos (θ1 + θ2) + i sin (θ1 + θ2)]
Dividing complex numbers in rectangular form :
z1 / z2 = r1(cos θ1 + i sin θ1) / r2(cos θ2 + i sin θ2)
= (r1 / r2) [cos (θ1 - θ2) + i sin (θ1 - θ2)]
Write your answer in rectangular form when rectangular form is given and in polar form when polar form is given.
Problem 1 :
(4 + 4i) (5 - 3i)
Solution :
(4 + 4i) (5 - 3i)
Here two complex numbers are multiplied, using distributive property, multiplying these two complex numbers, we get
= (4 + 4i) (5 - 3i)
= 4 (5) + 4 (-3i) + 4i (5) + 4i (-3i)
= 20 - 12i + 20i - 12i2
= 20 + 8i - 12(-1)
= 20 + 8i + 12
= 32 + 8i
Problem 2 :
Solution :
Problem 3 :
Solution :
Problem 4 :
Solution :
Problem 5 :
(-1 - 6i)3
Solution :
(a-b)3 = a3 - 3a2 b + 3ab2 - b3
Here a = -1 and b = 6i
= (-1)3 - 3(-1)2 6i + 3(-1)(6i)2 - (6i)3
i2 = -1 and i3 = -i
= -1 - 3(6i) - 3(36)(-1) - 216(-i)
= -1 - 18 i + 108 + 216 i
= 107 + 198 i
Problem 6 :
Solution :
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM