sin (π/2 - θ) = cos θ
cos (π/2 - θ) = sin θ
tan (π/2 - θ) = cot θ
cosec (π/2 - θ) = sec θ
sec (π/2 - θ) = cosec θ
sin (-θ) = -sin θ
cos (-θ) = cos θ
tan (-θ) = -tan θ
cosec (-θ) = -cosec θ
sec (-θ) = sec θ
cot (-θ) = -cot θ
Simplify:
Problem 1:
sin θ + sin (-θ)
Solution :
= sin θ + sin (-θ)
= sin θ - sin θ
= 0
Problem 2 :
tan (-θ) - tan θ
Solution :
= tan (-θ) - tan θ
= - tan θ - tan θ
= -2 tan θ
Problem 3 :
2 cos θ + cos (-θ)
Solution :
= 2 cos θ + cos (-θ)
= 2 cos θ + cos θ
= 3 cos θ
Problem 4 :
3 sin θ - sin (-θ)
Solution :
= 3 sin θ - sin (-θ)
= 3 sin θ + sin θ
= 4 sin θ
Problem 5 :
cos² (-α)
Solution:
= cos² (-α)
= cos² α
Problem 6 :
sin² (-α)
Solution :
= sin² (-α)
= (- sin α)²
= sin² α
Problem 7 :
cos (-α) cos α - sin (-α) sin α
Solution :
= cos (-α) cos α - sin (-α) sin α
= cos α cos α - (-sin α sin α)
= cos α cos α + sin α sin α
= cos² α + sin² α
= 1
Problem 8 :
2 sin θ - cos (90˚ - θ)
Solution :
= 2 sin θ - cos (90˚ - θ)
= 2 sin θ - sin θ
= sin θ
Problem 9 :
sin (-θ) - cos (90˚ - θ)
Solution :
= sin (-θ) - cos (90˚ - θ)
= - sin θ - cos (90˚ - θ)
= - sin θ - sin θ
= -2 sin θ
Problem 10 :
sin (90˚ - θ) - cos θ
Solution :
= sin (90˚ - θ) - cos θ
= cos θ - cos θ
= 0
Problem 11 :
3 cos (-θ) - 4 sin (π/2 - θ)
Solution :
= 3 cos (-θ) - 4 sin (π/2 - θ)
= 3 cos (θ) - 4 sin (π/2 - θ)
= 3 cos θ - 4 cos θ
= - cos θ
Problem 12 :
3 cos θ + sin (π/2 - θ)
Solution :
= 3 cos θ + sin (π/2 - θ)
= 3 cos θ + cos θ
= 4 cos θ
Problem 13 :
cos (π/2 - θ) + 4 sin θ
Solution :
= cos (π/2 - θ) + 4 sin θ
= sin θ + 4 sin θ
= 5 sin θ
Problem 14 :
Explain why sin (θ - ɸ) = -sin (ɸ - θ), cos (θ - ɸ) = cos (ɸ - θ)
Solution :
sin (θ - ɸ) = -sin (ɸ - θ)
(θ - ɸ) = - (θ - ɸ)
(θ - ɸ) = (ɸ - θ)
From (θ - ɸ) factoring negative sign. So, we will get (ɸ - θ).
cos (θ - ɸ) = cos (ɸ - θ)
Here, cos θ = cos (-θ)
So,
cos (θ - ɸ) = cos (- θ + ɸ)
cos (θ - ɸ) = cos (ɸ - θ)
Problem 15 :
Simplify:
sin θ / cos θ
Solution :
= sin θ / cos θ
= tan θ
Problem 16 :
sin (-θ) / cos (-θ)
Solution :
= sin (-θ) / cos (-θ)
= - sin θ / cos θ
= - tan θ
Problem 17 :
sin (π/2 - θ) / cos θ
Solution :
= sin (π/2 - θ) / cos θ
= cos θ / cos θ
= 1
Problem 18 :
-sin (-θ) / cos θ
Solution :
= -sin (-θ) / cos θ
= - (- sin θ) / cos θ
= sin θ / cos θ
= tan θ
Problem 19 :
cos (π/2 - θ) / sin (π/2 - θ)
Solution :
= cos (π/2 - θ) / sin (π/2 - θ)
= sin θ / cos θ
= tan θ
Problem 20 :
cos (π/2 - θ) / cos θ
Solution :
= cos (π/2 - θ) / cos θ
= sin θ / cos θ
= tan θ
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM