NAME THE PROPERTY OF EQUALITY AND CONGRUENCE

Reflexive Property

Equality

AB = AB

m∠A = m∠A

Congruence

AB ≅ AB

∠A ≅ ∠A

Symmetric Property

Equality

If AB = CD, then CD = AB.

If m∠A = m∠B, then m∠B = m∠A.

Congruence

If AB ≅ CD, then CD ≅ AB.

If ∠A ≅ ∠B, then ∠B ≅ ∠A.

Transitive Property

Equality

If AB = CD and CD = EF, then AB = EF.

If m∠A = m∠B and m∠B = m∠C, then m∠A = m∠C.

Congruence

If AB ≅ CD and CD ≅ EF, then AB ≅ EF.

If ∠A ≅ ∠B and ∠B ≅ ∠C, then  ∠A ≅ ∠C.

PROPERTIES OF EQUALITY

Addition Property

Adding the same number to each side of an equation produces an equivalent equation.

Example

x - 3 = 7

x - 3 + 3 = 7 + 3

Subtraction Property

Subtracting the same number from each side of an equation produces an equivalent equation.

Example

y + 5 = 11

y + 5 - 5 = 11 - 5

Multiplication Property

Multiplying each side of an equation by the same nonzero number produces an equivalent equation.

Example

14z=614z4=64

Division Property

Dividing each side of an equation by the same nonzero number produces an equivalent equation.

Example

8x=168x8=168

Substitution Property

Substituting a number for a variable in an equation produces an equivalent equation.

Example

x = 7

2x + 4 = 2(7) + 4

Problem 1 :

Match the statement with the property it illustrates.

1. m∠DEF = m∠DEF

2. If PQ = ST, then ST = PQ.

3. XY = XY

4. If ∠J ≅ ∠K and ∠K ≅ ∠L, then ∠J ≅ ∠L.

5. If PQ = QR and QR = RS, then PQ = RS.

6. If m∠X = m∠Y, then m∠Y = m∠X.

A. Symmetric Property of Equality

B. Reflexive Property of Equality

C. Transitive Property of Equality

D. Reflexive Property of Congruence

E. Symmetric Property of Congruence

F. Transitive Property of Congruence

Solution:

1. m∠DEF = m∠DEF

B. Reflexive Property of Equality

2. If PQ = ST, then ST = PQ.

E. Symmetric Property of Congruence

3. XY = XY

D. Reflexive Property of Congruence

4. If ∠J ≅ ∠K and ∠K ≅ ∠L, then ∠J ≅ ∠L.

F. Transitive Property of Congruence

5. If PQ = QR and QR = RS, then PQ = RS.

C. Transitive Property of Equality

6. If m∠X = m∠Y, then m∠Y = m∠X.

A. Symmetric Property of Equality

Problem 2 :

Completing statements use the property to complete the statement.

1. Reflexive Property of Equality: JK =  ____

JK = JK

2. Symmetric Property of Equality: If m∠P = m∠Q, then ___ = __.

If m∠P = m∠Q, then m∠Qm∠P

3. Transitive Property of Equality: If AB = BC and BC = CD, then ___ = ___.

If AB = BC and BC = CD, then AB = CD

4. Reflexive Property of Congruence: ___ ≅ ∠GHJ

∠GHJ ≅ ∠GHJ

5. Symmetric Property of Congruence: If ___ ≅ ___, then ∠XYZ ≅  ∠ABC.

If ∠ABC∠XYZ, then ∠XYZ ≅ ∠ABC

6. Transitive Property of Congruence: If GH ≅ IJ and ___ ≅ ___, then GH ≅ PQ.

If GH ≅ IJ and IJPQ, then GH ≅ PQ

Problem 3 :

Use each property of equality or congruence to complete each statement

1. Symmetric Property:

If ∠DEF ≅ ∠GHI, then 

Solution :

By applying symmetric property, if a = b then b = a 

If ∠DEF ≅ ∠GHI, then ∠GHI ≅ ∠DEF

2. Transitive Property:

If AB + CD = EF and EF = GH, then

Solution :

By applying transitive property, if a = b, b = c then a = c. 

AB + CD = EF -----(1)

EF = GH ------(2)

AB + CD = GH

3. Substitution Property:

If m∠1 - m∠2 = 90 and m∠2 = m∠4, then

Solution :

m∠1 - m∠2 = 90 ----(1)

m∠2 = m∠4----(2)

By applying (2) in (1), we get

m∠1 - m∠4 = 90

4. Reflexive Property:

m∠WXY = ?

Solution :

Using reflexive property, if a = a, then b = b

m∠WXY

5. Addition Property:

If MN = RS and AB = CD, then

Solution :

MN = RS -----(1)

AB = CD -----(2)

(1) + (2)

MN + AB and RS + CD

6. Subtraction Property:

If m∠1 + 45 = m∠S + 45, then

Solution :

 m∠1 + m∠S

7. Multiplication Property:

If (1/5)CD = 15, then

Solution :

(1/5) CD ⋅ 5 = 15 ⋅ 5

CD = 75

8. Division Property:

If 3m∠JKL = 99, then

Solution :

Using division property, dividing by 3 on both sides.

 3m∠JKL/3 = 99/3

m∠JKL = 33

9. Symmetric Property:

If AB = YU, then

Solution :

Using symmetric property, if a = b then b = a

If AB = YU, then YU = AB

10. Symmetric Property:

If ∠H = ∠K, then

Solution :

Using symmetric property, if a = b then b = a

 ∠K ≅ ∠H.

11. Reflexive Property:

∠PQR ≅ ∠PQR

12. Distributive Property:

3(x - 1)

Solution :

Using distributive property, distributing 3, we get

= 3x - 3

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More