To multiply binomials, we use the rules given below.
Expand and simplify :
Problem 1 :
(1 + √2) (2 + √2)
Solution :
(1 + √2) (2 + √2)
= (1) (2 + √2) + (√2) (2 + √2)
= 2 + √2 + 2√2 + √2 ⋅ √2
= 2 + 3√2 + 2
= 4 + 3√2
Problem 2 :
(2 + √3) (3 + √3)
Solution :
(2 + √3) (3 + √3)
= 2 (3 + √3) + (√3) (3 + √3)
= 6 + 2√3 + 3√3 + √3 ⋅√3
= 6 + 5√3 + 3
= 9 + 5√3
Problem 3 :
(4 - √2) (3 + √2)
Solution :
(4 - √2) (3 + √2)
= 4(3 + √2) - √2(3 + √2)
= 12 + 4√2 - 3√2 - √2 ⋅√2
= 12 + √2 – 2
= 10 + √2
Problem 4 :
(1 + √3) (1 - √3)
Solution :
(1 + √3) (1 - √3)
= (1)(1 - √3) + (√3)(1 - √3)
= 1 - √3 + √3 - √3 ⋅√3
= 1 - 3
= -2
Problem 5 :
(√5 + 2) (√5 - 3)
Solution :
(√5 + 2) (√5 - 3)
= (√5)(√5 - 3) + 2 (√5 - 3)
= √5 ⋅√5 - 3√5 + 2√5 – 6
= 5 - √5 – 6
= -1 - √5
Problem 6 :
(6 - √3) (2 + √3)
Solution :
(6 - √3) (2 + √3)
= 6(2 + √3) - √3(2 + √3)
= 12 + 6√3 - 2√3 - √3 ⋅√3
= 12 + 4√3 – 3
= 9 + 4√3
Problem 7 :
(4 - 3√3) (2 - √3)
Solution :
(4 - 3√3) (2 - √3)
= (4) (2 - √3) - (3√3) (2 - √3)
= 8 - 4√3 - 6√3 + 3(√3 ⋅ √3)
= 8 - 10√3 + 9
= 17 - 10√3
Problem 8 :
(-1 + 2√2) (2 - √2)
Solution :
(-1 + 2√2) (2 - √2)
= (-1)(2 - √2) + 2√2(2 - √2)
= -2 + √2 + 4√2 – 2(√2 ⋅ √2)
= -2 + 5√2 – 4
= -6 + 5√2
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM