Subscribe to our âśď¸ YouTube channel đ´ for the latest videos, updates, and tips.
To multiply binomials, we use the rules given below.
Expand and simplify :
Problem 1 :
(1 + â2) (2 + â2)
Solution :
(1 + â2) (2 + â2)
= (1) (2 + â2) + (â2) (2 + â2)
= 2 + â2 + 2â2 + â2 â â2
= 2 + 3â2 + 2
= 4 + 3â2
Problem 2 :
(2 + â3) (3 + â3)
Solution :
(2 + â3) (3 + â3)
= 2 (3 + â3) + (â3) (3 + â3)
= 6 + 2â3 + 3â3 + â3 â â3
= 6 + 5â3 + 3
= 9 + 5â3
Problem 3 :
(4 - â2) (3 + â2)
Solution :
(4 - â2) (3 + â2)
= 4(3 + â2) - â2(3 + â2)
= 12 + 4â2 - 3â2 - â2 â â2
= 12 + â2 â 2
= 10 + â2
Problem 4 :
(1 + â3) (1 - â3)
Solution :
(1 + â3) (1 - â3)
= (1)(1 - â3) + (â3)(1 - â3)
= 1 - â3 + â3 - â3 â â3
= 1 - 3
= -2
Problem 5 :
(â5 + 2) (â5 - 3)
Solution :
(â5 + 2) (â5 - 3)
= (â5)(â5 - 3) + 2 (â5 - 3)
= â5 â â5 - 3â5 + 2â5 â 6
= 5 - â5 â 6
= -1 - â5
Problem 6 :
(6 - â3) (2 + â3)
Solution :
(6 - â3) (2 + â3)
= 6(2 + â3) - â3(2 + â3)
= 12 + 6â3 - 2â3 - â3 â â3
= 12 + 4â3 â 3
= 9 + 4â3
Problem 7 :
(4 - 3â3) (2 - â3)
Solution :
(4 - 3â3) (2 - â3)
= (4) (2 - â3) - (3â3) (2 - â3)
= 8 - 4â3 - 6â3 + 3(â3 â â3)
= 8 - 10â3 + 9
= 17 - 10â3
Problem 8 :
(-1 + 2â2) (2 - â2)
Solution :
(-1 + 2â2) (2 - â2)
= (-1)(2 - â2) + 2â2(2 - â2)
= -2 + â2 + 4â2 â 2(â2 â â2)
= -2 + 5â2 â 4
= -6 + 5â2
Problem 9 :
4â3 (2â3 - 3â6)
Solution :
= 4â3 (2â3 - 3â6)
Distributing 4â3, we get
= 4â3(2â3) - 4â3(3â6)
= 8 â3â3 - 12â3â6
= 8(3) - 12â(3 x 6)
= 24 - 12â(3 x 3 x 2)
= 24 - (12 x 3)â2
= 24 - 36â2
Problem 10 :
(3âx - ây)2
Solution :
= (3âx - ây)2
Comparing with (a - b)2 = a2 - 2ab + b2
a = 3âx and b = ây
= (3âx)2 - 2(3âx)(ây) + (ây)2
= 32 (âx)2 - 6âxây + y
= 9x - 6âxy + y
Problem 11 :

Solution :
Length = 3â2 ft and width = â40 ft
Area of rectangle = length x width
= 3â2(â40)
= 3(â2â40)
= 3â(2 x 2 x 2 x 5)
= 3 x 2 â10
= 6â10
So, area of rectangle is 6â10 square feet
Problem 12 :

Solution :
Length = 10â12 m and height = 6â2 m
Area of triangle = (1/2) x base x height
= (1/2) x 10â12 x 6â2
= 5â12 x 6â2
= 5â(2 x 2 x 3) x 6â2
= (5 x 2)â3 x 6â2
= 10â3 x 6â2
= 60â(3 x 2)
= 60â6
So, area of triangle is 60â6 square meter.
Problem 13 :

Solution :
Length = 6â12 m and height = 3â5 m
Area of triangle = (1/2) x base x height
= (1/2) x 6â12 x 3â5
= 3â12 x 3â2
= (3 x 3)â(2 x 2 x 3) x 3â2
= (3 x 3 x 2)â3 x 3â2
= 54â(3 x 2)
= 54â6
So, area of triangle is 54â6 square meter
Problem 14 :

Solution :
Length = 7â6 yd and height = 2â18 yd
Area of parallelogram = base x height
= 7â6 x 2â18
= (7 x 2)â6â18
= 14â(6 x 6 x 3)
= (14 x 6)â3
= 84â3 square yards
So, area of parallelogram is 84â3 square yards.
Problem 15 :
Simplify
-4 / (â3 - â5)
Solution :
= -4 / (â3 - â5)
Conjugate of â3 - â5 is â3 + â5
= -4(â3 + â5) / (â3 - â5) (â3 + â5)
= -4(â3 + â5) / (â32 - â52)
= -4(â3 + â5) / (3 - 5)
= -4(â3 + â5) / (-2)
= 2(â3 + â5)
= 2â3 + 2â5
Problem 16 :
Simplify
(âx + 2)/(3 - âx)
Solution :
= (âx + 2)/(3 - âx)
Conjugate of (3 - âx) is (3 + âx)
= (âx + 2)(3 + âx)/(3 - âx) (3 + âx)
Multiplying the numerator :
= (âx + 2) (3 + âx)
= 3âx + âx(âx) + 6 + 2âx
= 3âx + x + 6 + 2âx
= x + 6 + 5âx
Multiplying the denominator :
= (3 - âx) (3 + âx)
= 32 - (âx)2
= 9 - x
= (x + 6 + 5âx) / (9 - x)
Subscribe to our âśď¸ YouTube channel đ´ for the latest videos, updates, and tips.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM