MULTIPLYING POLYNOMIALS

To multiply two or more monomials, we have to follow the rule given below.

(i) Multiply the signs

(ii) Multiply the coefficients

(iii) Multiply the variables.

Multiplying Monomial by a Polynomial

Find the product.

Problem 1 :

-8x4(-11x – 6)

Solution :

= -8x4(-11x – 6)

 = (-8x4)(-11x) + (-8x4)(-6)

= 88x5 + 48x4

Problem 2 :

3x2(10x7 + 6x2)

Solution :

= 3x2(10x7 + 6x2)

= 3x2(10x7) + 3x2(6x2)

= 30x9 + 18x4

Multiplying Binomials

Problem 3 :

(2x + 3)(x – 9)

Solution :

Given, (2x + 3)(x – 9)

Distribute.

= 2x(x – 9) + 3(x – 9)

Distribute again.

= 2x(x) + 2x(-9) + 3(x) – 3(9)

Multiply.

= 2x2 – 18x + 3x – 27

Combine like terms.

= 2x2 – 15x – 27

Problem 4 :

(x + 4y)(x + 4y)

Solution :

= (x + 4y)(x + 4y)

Using algebraic identity.

(a + b)2 = a2 + b2 + 2ab

Given a = x, b = 4y

(x + 4y)2 = (x)2 + (4y)2 + 2(x)(4y)

= x2 + 16y2 + 8xy

Problem 5 :

(9 + x)(4x – 12)

Solution :

Given, (9 + x)(4x – 12)

Distribute.

= 9(4x – 12) + x(4x – 12)

Distribute again.

= 9(4x) + 9(-12) + x(4x) + x(-12)

Multiply.

= 36x – 108 + 4x2 – 12x

Combine like terms.

= 4x2 + 24x – 108

Multiplying Binomial by Trinomial

Problem 6 :

(7y - 3)(49y+ 21y + 9)

Solution :

We can do this problems in two ways,

(i) Doing distribution

(ii) Algebraic identities

Method 1 :

= (7y - 3)(49y+ 21y + 9)

Distribute.

= 7y(49y+ 21y + 9) – 3(49y+ 21y + 9)

Distribute again.

= 7y(49y2) + 7y(21y) + 7y(9) + (-3)(49y2) + (-3)(21y) + (-3)(9)

Multiply.

= 343y3 + 147y2 + 63y – 147y2 – 63y – 27

Combine like terms.

= 343y3 - 27

Method 2 :

(7y - 3)(49y+ 21y + 9)

= (7y - 3)((7y)+ 7y(3) + 32)

It exactly matches with the algebraic identity, 

(a - b) (a2 + ab + b2) = a3 - b3

= (7y)3 - 33

= 343y3 - 27

Multiplying Trinomial by Trinomial

Problem 7 :

(3x+ 3x + 1) (x+ 2x + 3)

Solution :

Given, (3x+ 3x + 1) (x+ 2x + 3)

Distribute.

3x2(x+ 2x + 3) + 3x(x+ 2x + 3) + 1(x+ 2x + 3)

Distribute again.

= (3x2)(x2) + (3x2)(2x) + (3x2)(3) + 3x(x2) + 3x(2x) + 3x(3) + 1(x2) + 1(2x) + 1 (3)

Multiply.

= 3x4 + 6x3 + 9x2 + 3x3 + 6x2 + 9x + x2 + 2x + 3

Combine like terms.

= 3x4 + 9x3 + 16x2 + 11x + 3

Problem 8 :

3x(3x - 1)(2x + 9)

Solution :

3x(3x – 1)(2x + 9)

Distribute.

= (3x)[(3x)(2x + 9) + (-1)(2x + 9)]

Distribute again.

= (3x)[(3x)(2x) + 9(3x) + (-1)(2x) + (-1)(9)]

Multiply.

= (3x)[6x2 + 27x – 2x – 9]

Combine like terms.

= (3x)[6x2 + 25x – 9]

= 18x3 + 75x2 – 27x

Using Algebraic Identities

Problem 9 :

(a - 10)(a + 10)

Solution :

= (a - 10)(a + 10)

Using algebraic identity.

(a + b)(a – b) = a2 – b2

Given, a = a, b = 10

(a - 10)(a + 10) = (a)2 – (10)2

= a2 - 100

Problem 10 :

(7p + 10)(7p – 10)

Solution :

= (7p + 10)(7p – 10)

Using algebraic identity.

(a + b)(a – b) = a2 – b2

Given a = 7p, b = 10

(7p + 10)(7p – 10) = (7p)2 – (10)2

= 49p2 - 100

Problem 11 :

(7m – 5w)(7m + 5w)

Solution :

= (7m – 5w)(7m + 5w)

Using algebraic identity.

(a + b)(a – b) = a2 – b2

Given a = 7m, b = 5w

(7m – 5w)(7m + 5w) = (7m)2 – (5w)2

= 49m2 – 25w2

Problem 12 :

You are playing miniature golf on the hole shown.

a. Write a polynomial that represents the area of the golf hole.

b. Write a polynomial that represents the perimeter of the golf hole.

c. Find the perimeter of the golf hole when the area is 216 square feet.

multiplying-polynomial-wp-q1

Solution :

a.

multiplying-polynomial-wp-q1p1.png

= Area of square + area of rectangle

= x(x) + (x + 4)3x

= x2+ 3x2 + 12x

Arae of golf hole = (4x2 + 12x) square feet

b. Perimeter of the golf hole = 4x + 2(x + 4 + 3x)

= 4x + 2(4x + 4)

= 4x + 8x + 8

= (12x + 8) ft

c. Given that, the area = 216 square feet

4x2 + 12x = 216

4x2 + 12x - 216 = 0

Dividing by 4, we get

x2 + 3x - 54 = 0

x2 + 9x - 6x - 54 = 0

x(x + 9) - 6(x + 9) = 0

(x - 6)(x + 9) = 0

x = -9 and x = 6

Perimeter of golf hole when x = 6

= 12(6) + 8

= 72 + 8

= 80 ft

Problem 13 :

A box in the shape of a rectangular prism has a volume of 96 cubic feet. The box has a length of (x + 8) feet, a width of x feet, and a height of (x − 2) feet. Find the dimensions of the box.

Solution :

Volume of rectangular prism = 96 cubic feet

length = x + 8, width = x and height = x - 2

(x + 8) x (x - 2) = 96

x(x+ 6x - 16) = 96

x+ 6x2 - 16x - 96 = 0

multiplying-polynomial-wp-q2.png

= (x - 4) (x+ 10x + 24)

= (x - 4)(x + 6)(x + 4)

(x - 4)(x + 6)(x + 4) = 0

x = 4, -6 and -4

Possible value of x is 4.

length = 12, width = 4 and height = 2

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More