MULTIPLYING BINOMIALS WITH RADICALS

To multiply binomials, we follow

i) Distributive property

ii) algebraic identity

Problem 1 :

(√5 - 2 ) (√5 + 2)

Solution :

i)  Using distributive property, multiplying binomials.

(√5 - 2) (√5 + 2)

Multiply the first term by the first term

Multiply the first term by the outer term

Multiply the second term by first term

Multiply the second term by second term

Simplify the like terms.

= (√5)2 + 2√5 - 2√5 - 4

= 5 - 4

= 1

ii)  Using distributive property, multiplying binomials.

= (√5 - 2) (√5 + 2)

= (√5)2 - 22

= 5 - 4

= 1

Expand and simplify :

Problem 1 :

(4 + √3) (4 - √3)

Solution :

(4 + √3) (4 - √3)

= 4(4) - 4√3 + 4√3 - (√3)2

= 16 - 3

= 13

Problem 2 :

(5 - √2) (5 + √2)

Solution :

(5 - √2) (5 + √2)

= 5(5) + 5√2 - 5√2 - (√2)2

= 25 - 2

= 23

Problem 3 :

(√5 - 2 ) (√5 + 2)

Solution :

(√5 - 2) (√5 + 2)

= (√5)2 + 2√5 - 2√5 - 4

= 5 - 4

= 1

Problem 4 :

(√7 + 4 ) (√7 - 4)

Solution :

(√7 + 4) (√7 - 4)

= (√7)2 - 4√7 + 4√7 - 16

= 7 - 16

= -9

Problem 5 :

(3√2 + 2 ) (3√2 - 2)

Solution :

(3√2 + 2) (3√2 - 2)

= 32(√2)2 - 6√2 + 6√2 - 4

= 18 - 4

= 14

Problem 6 :

(2√5 - 1 ) (2√5 + 1)

Solution :

(2√5 - 1) (2√5 + 1)

= 22(√5)2 + 2√5 - 2√5 - 1

= 20 - 1

= 19

Problem 7 :

(5 - 3√3) (5 + 3√3)

Solution :

(5 - 3√3) (5 + 3√3)

= 5(5) + 15√3 - 15√3 - 9(√3)2

= 25 - 27

= -2

Problem 8 :

(2 - 4√2) (2 + 4√2)

Solution :

(2 - 4√2) (2 + 4√2)

= 2(2) + 8√2 - 8√2 - 16(√2)2

= 4 - 32

= -28

Problem 9 :

(1 + 5√7) (1 - 5√7)

Solution :

(1 + 5√7) (1 - 5√7)

= 1(1) - 5√7 + 5√7 - 25(√7)2

= 1 - 175

= -174

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More