To multiply binomials, we follow
i) Distributive property
ii) algebraic identity
Problem 1 :
(√5 - 2 ) (√5 + 2)
Solution :
i) Using distributive property, multiplying binomials.
(√5 - 2) (√5 + 2)
Multiply the first term by the first term
Multiply the first term by the outer term
Multiply the second term by first term
Multiply the second term by second term
Simplify the like terms.
= (√5)2 + 2√5 - 2√5 - 4
= 5 - 4
= 1
ii) Using distributive property, multiplying binomials.
= (√5 - 2) (√5 + 2)
= (√5)2 - 22
= 5 - 4
= 1
Expand and simplify :
Problem 1 :
(4 + √3) (4 - √3)
Solution :
(4 + √3) (4 - √3)
= 4(4) - 4√3 + 4√3 - (√3)2
= 16 - 3
= 13
Problem 2 :
(5 - √2) (5 + √2)
Solution :
(5 - √2) (5 + √2)
= 5(5) + 5√2 - 5√2 - (√2)2
= 25 - 2
= 23
Problem 3 :
(√5 - 2 ) (√5 + 2)
Solution :
(√5 - 2) (√5 + 2)
= (√5)2 + 2√5 - 2√5 - 4
= 5 - 4
= 1
Problem 4 :
(√7 + 4 ) (√7 - 4)
Solution :
(√7 + 4) (√7 - 4)
= (√7)2 - 4√7 + 4√7 - 16
= 7 - 16
= -9
Problem 5 :
(3√2 + 2 ) (3√2 - 2)
Solution :
(3√2 + 2) (3√2 - 2)
= 32(√2)2 - 6√2 + 6√2 - 4
= 18 - 4
= 14
Problem 6 :
(2√5 - 1 ) (2√5 + 1)
Solution :
(2√5 - 1) (2√5 + 1)
= 22(√5)2 + 2√5 - 2√5 - 1
= 20 - 1
= 19
Problem 7 :
(5 - 3√3) (5 + 3√3)
Solution :
(5 - 3√3) (5 + 3√3)
= 5(5) + 15√3 - 15√3 - 9(√3)2
= 25 - 27
= -2
Problem 8 :
(2 - 4√2) (2 + 4√2)
Solution :
(2 - 4√2) (2 + 4√2)
= 2(2) + 8√2 - 8√2 - 16(√2)2
= 4 - 32
= -28
Problem 9 :
(1 + 5√7) (1 - 5√7)
Solution :
(1 + 5√7) (1 - 5√7)
= 1(1) - 5√7 + 5√7 - 25(√7)2
= 1 - 175
= -174
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM