Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
Here we can see how we multiply binomials.

If two binomials are the same, we can use the algebraic identities instead of multiplying the binomials directly.
Problem 1 :
(x + 5) (x + 5)
Solution :
= (x + 5) (x + 5)
= x(x) + x(5) + 5(x) + 5(5)
= x² + 5x + 5x + 25
= x² + 10x + 25
Expand the following and collect
like terms:
Problem 2 :
(x + 9) (x + 9)
Solution :
= (x + 9) (x + 9)
= x(x) + x(9) + 9(x) + 9(9)
= x² + 9x + 9x + 81
Combine the like terms.
= x² + 18x + 81
Problem 3 :
(y - 2) (y - 2)
Solution :
= (y - 2) (y - 2)
= y(y) + y(-2) - 2(y) - 2(-2)
= y² - 2y – 2y + 4
Combine the like terms.
= y² - 4y + 4
Problem 4 :
(m - 3) (m - 3)
Solution :
= (m - 3) (m - 3)
= m(m) + m(-3) - 3(m) - 3(-3)
= m² - 3m – 3m + 9
Combine the like terms.
= m² - 6m + 9
Problem 5 :
(2m + 5) (2m + 5)
Solution :
= (2m + 5) (2m + 5)
= 2m(2m) + 2m(5) + 5(2m) + 5(5)
= 4m² + 10m + 10m + 25
Combine the like terms.
= 4m² + 20m + 25
Problem 6 :
(t + 10) (t + 10)
Solution :
= (t + 10) (t + 10)
= t(t) + t(10) + 10(t) + 10(10)
= t² + 10t + 10t + 100
Combine the like terms.
= t² + 20t + 100
Problem 7 :
(y + 8)²
Solution :
(y + 8)² = (y + 8) (y + 8)
= y(y) + y(8) + 8(y) + 8(8)
= y² + 8y + 8y + 64
Combine the like terms.
= y² + 16y + 64
Instead of multiplying the binomials directly, we can use algebraic identity (a + b)2 = a2 + 2ab + b2
(y + 8)² = y2 + 2y(8) + 82
= y2 + 16y + 64
Problem 8 :
(t + 6)²
Solution :
(t + 6)² = (t + 6) (t + 6)
= t(t) + t(6) + 6(t) + 6(6)
= t² + 6t + 6t + 36
Combine the like terms.
= t² + 12t + 36
Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM