MULTIPLYING BINOMIALS BY ONE ANOTHER

Expand and simplify :

Example 1 :

(x + 4) (x + 3) (x + 2)

Solution :

By expanding first two factors, we get

= [(x ∙ x) + (x  3) + (4 ∙ x) + (4 ∙ 3)] (x + 2)

= (x+ 3x + 4x + 12)(x + 2)

By combining like terms,

= (x+ 7x + 12) (x + 2)

By distributing x and 2, we get

= (x∙ x) + (7x ∙ x) + (12 ∙ x) + (x∙ 2) + (7x ∙ 2) + (12 ∙ 2)

= x+ 7x+ 12x + 2x+ 14x + 24

By combining like terms,

x2x7x12x + 14x + 24

x+ 9x+ 26x + 24

Example 2 :

(x - 3)(x - 2)(x + 4)

Solution :

By expanding first two factors, we get

= [(x ∙ x) - (x ∙ 2) - (3 ∙ x) + (3 ∙ 2)] (x + 4)

= (x2 - 2x - 3x + 6)(x + 4)

(x2 - 5x + 6)(x + 4)

By distributing x and 4, we get

= (x∙ x) + (-5x ∙ x) + (6 ∙ x) + (x∙ 4) + (-5x ∙ 4) + (6 ∙ 4)

= x3 - 5x2 + 6x + 4x2 - 20x + 24

By combining like terms,

x- 5x4x+ 6x - 20x + 24

xx2 - 14x + 24

Example 3 :

(x - 3)(x - 2)(x - 5)

Solution :

By expanding first two factors, we get

= [(x ∙ x) - (x ∙ 2) - (3 ∙ x) + (3 ∙ 2)] (x - 5)

= (x2 - 2x - 3x + 6) (x - 5)

= (x2 - 5x + 6)(x - 5)

By distributing x and 2, we get

= (x∙ x) - (5x ∙ x) + (6 ∙ x) - (x∙ 5) + (5x ∙ 5) - (6 ∙ 5)

x3 - 5x2 + 6x - 5x2 + 25x - 30

By combining like terms,

x- 5x- 5x+ 6x + 25x - 30

x- 10x2 + 31x - 30

Example 4 :

(2x - 3)(x + 3)(x - 1)

Solution :

By expanding first two factors, we get

= [2x(x) + 2x(3) - 3(x) - 3(3)] (x - 1)

= (2x2 + 6x - 3x - 9) (x - 1)

(2x2 + 3x - 9) (x - 1)

= 2x2(x) - 2x2(1) + 3x(x) - 3x(1) - 9(x) + 9

= 2x3 - 2x2 + 3x2 - 3x - 9x + 9

2x3 + x2 - 12x + 9

Example 5 :

(3x + 5)(x + 1)(x + 2)

Solution :

By expanding first two factors, we get

= [3x(x) + 3x(1) + 5(x) + 5(1)] (x + 2)

= (3x2 + 3x + 5x + 5) (x + 2)

(3x2 + 8x + 5) (x + 2)

= 3x2(x) + 3x2(2) + 8x(x) + 8x(2) + 5(x) + 5(2)

= 3x3 + 6x2 + 8x+ 16x + 5x + 10

= 3x3  + 14x+ 21x + 10

Example 6 :

(4x + 1)(3x - 1)(x + 1)

Solution :

By expanding first two factors, we get

= [4x(3x) - 4x(1) + 1(3x) - 1(1)] (x + 1)

= (12x2 - 4x + 3x - 1) (x + 1)

(12x2 - x - 1) (x + 1)

= 12x2(x) + 12x2(1) - x(x) - x(1) - 1(x) - 1(1)

= 12x+ 12x2 - x2 - x - x - 1

= 12x3  + 11x2 - 2x - 1

Example 7 :

(2 - x)(3x + 1)(x - 7)

Solution :

By expanding first two factors, we get

= [2(3x) + 2(1) - x(3x) - x(1)] (x - 7)

= (6x + 2 - 3x2 - x) (x - 7)

(-3x+ 5x + 2) (x - 7)

= -3x2(x) + 3x2(7) + 5x(x) - 5x(7) + 2(x) - 2(7)

= -3x+ 21x+ 5x2 - 35x + 2x - 14

= -3x3  + 26x- 33x - 14

Example 8 :

(x - 2)(4 - x)(3x + 2)

Solution :

By expanding first two factors, we get

= [x(4) - x(x) - 2(4) + 2(x)] (3x + 2)

= (4x - x2 - 8 + 2x) (3x + 2)

(-x+ 6x - 8) (3x + 2)

= -x2(3x) - x2(2) + 6x(3x) + 6x(2) - 8(3x) - 8(2)

= -3x3 - 2x+ 18x2 + 12x - 24x - 16

= -3x3  + 16x- 12x - 16

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More