MULTIPLYING BINOMIAL BY TRINOMIAL

Expand and simplify :

Example 1 :

(x + 2)(x+ x + 4)

Solution :

By distributing x and 2, we get

= x(x2) + x(x) + x(4) + 2(x2) + 2(x) + 2(4)

= x+ x+ 4x + 2x+ 2x + 8

= x+ 3x+ 6x + 8

Example 2 :

(x + 3)(x+ 2x - 3)

Solution :

By distributing x and 3, we get

(x + 3)(x+ 2x - 3)

= x(x2) + x(2x) - x(3) + 3(x2) + 3(2x) - 3(3)

= x+ 2x2 - 3x + 3x+ 6x - 9

= x+ 5x+ 3x - 9

Example 3 :

(x + 3)(x+ 2x + 1)

Solution :

By distributing x and 3, we get

(x + 3)(x+ 2x + 1)

= x(x2) + x(2x) + x(1) + 3(x2) + 3(2x) + 3(1)

= x+ 2x2 + x + 3x+ 6x + 3

= x+ 5x+ 7x + 3

Example 4 :

(x + 1)(2x2 - x - 5)

Solution :

By distributing x and 1, we get

(x + 1)(2x2 - x - 5)

= x(2x2) - x(x) - x(5) + 1(2x2) - 1(x) - 1(5)

= 2x3 - x2 - 5x + 2x2 - x - 5

= 2x+ x2 - 6x - 5

Example 5 :

(2x + 3)(x2 + 2x + 1)

Solution :

By distributing 2x and 3, we get

(2x + 3)(x2 + 2x + 1)

= 2x(x2) + 2x(2x) + 2x(1) + 3(x2) + 3(2x) + 3(1)

= 2x3 + 4x2 + 2x + 3x2 + 6x + 3

= 2x+ 7x2 + 8x + 3

Example 6 :

(2x - 5)(x2 - 2x - 3)

Solution :

By distributing 2x and 5, we get

(2x - 5)(x2 - 2x - 3)

= 2x(x2) - 2x(2x) - 2x(3) - 5(x2) + 5(2x) + 5(3)

= 2x3 - 4x2 - 6x - 5x+ 10x + 15

= 2x3 - 9x+ 4x + 15

Example 7 :

(x + 5)(3x- x + 4)

Solution :

By distributing x and 5, we get

(x + 5)(3x- x + 4)

= x(3x2) - x(x) + x(4) + 5(3x2) - 5(x) + 5(4)

= 3x- x2 + 4x + 15x2 - 5x + 20

= 3x3 + 14x2 - x + 20

Example 8 :

(4x - 1)(2x- 3x + 1)

Solution :

By distributing 4x and 1, we get

(4x - 1)(2x- 3x + 1)

= 4x(2x2) - 4x(3x) + 4x(1) - 1(2x2) + 1(3x) - 1(1)

= 8x- 12x+ 4x - 2x2 + 3x - 1

= 8x3 - 14x2 + 7x - 1

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More