Expand and simplify :
Example 1 :
(x + 2)(x2 + x + 4)
Solution :
By distributing x and 2, we get
= x(x2) + x(x) + x(4) + 2(x2) + 2(x) + 2(4)
= x3 + x2 + 4x + 2x2 + 2x + 8
= x3 + 3x2 + 6x + 8
Example 2 :
(x + 3)(x2 + 2x - 3)
Solution :
By distributing x and 3, we get
= (x + 3)(x2 + 2x - 3)
= x(x2) + x(2x) - x(3) + 3(x2) + 3(2x) - 3(3)
= x3 + 2x2 - 3x + 3x2 + 6x - 9
= x3 + 5x2 + 3x - 9
Example 3 :
(x + 3)(x2 + 2x + 1)
Solution :
By distributing x and 3, we get
= (x + 3)(x2 + 2x + 1)
= x(x2) + x(2x) + x(1) + 3(x2) + 3(2x) + 3(1)
= x3 + 2x2 + x + 3x2 + 6x + 3
= x3 + 5x2 + 7x + 3
Example 4 :
(x + 1)(2x2 - x - 5)
Solution :
By distributing x and 1, we get
= (x + 1)(2x2 - x - 5)
= x(2x2) - x(x) - x(5) + 1(2x2) - 1(x) - 1(5)
= 2x3 - x2 - 5x + 2x2 - x - 5
= 2x3 + x2 - 6x - 5
Example 5 :
(2x + 3)(x2 + 2x + 1)
Solution :
By distributing 2x and 3, we get
= (2x + 3)(x2 + 2x + 1)
= 2x(x2) + 2x(2x) + 2x(1) + 3(x2) + 3(2x) + 3(1)
= 2x3 + 4x2 + 2x + 3x2 + 6x + 3
= 2x3 + 7x2 + 8x + 3
Example 6 :
(2x - 5)(x2 - 2x - 3)
Solution :
By distributing 2x and 5, we get
= (2x - 5)(x2 - 2x - 3)
= 2x(x2) - 2x(2x) - 2x(3) - 5(x2) + 5(2x) + 5(3)
= 2x3 - 4x2 - 6x - 5x2 + 10x + 15
= 2x3 - 9x2 + 4x + 15
Example 7 :
(x + 5)(3x2 - x + 4)
Solution :
By distributing x and 5, we get
= (x + 5)(3x2 - x + 4)
= x(3x2) - x(x) + x(4) + 5(3x2) - 5(x) + 5(4)
= 3x3 - x2 + 4x + 15x2 - 5x + 20
= 3x3 + 14x2 - x + 20
Example 8 :
(4x - 1)(2x2 - 3x + 1)
Solution :
By distributing 4x and 1, we get
= (4x - 1)(2x2 - 3x + 1)
= 4x(2x2) - 4x(3x) + 4x(1) - 1(2x2) + 1(3x) - 1(1)
= 8x3 - 12x2 + 4x - 2x2 + 3x - 1
= 8x3 - 14x2 + 7x - 1
Example 9 :
A hotel installs a new swimming pool and a new hot tub.
a. Write the polynomial in standard form that represents the area of the patio.
b. The patio will cost $10 per square foot. Determine the cost of the patio when x = 9.
Solution :
a)
Area of patio = Area of hotel - (area of pool + area of hot tub)
Dimension of hotel :
Length = (8x - 10) ft
width = 4 ft
Dimensions of pool :
Length = (6x - 14) ft
width = 2 x ft
Dimensions of hot tub :
length = width = x ft
Area of patio = (8x - 10)4x - [2x(6x - 14) + x(x)]
= 32x2 - 40x - [12x2 - 28x + x2]
= 32x2 - 40x - 12x2 + 28x - x2
= 32x2 - 12x2 - x2 - 40x + 28x
Area of patio = 19x2 - 12x
b)
Cost, when x = 10
Total cost = 19(10)2 - 12(10)
= 19 (100) - 120
= 1900 - 120
= 1780
Example 10 :
hockey, a goalie behind the goal line can only play a puck in the trapezoidal region.
a. Write a polynomial that represents the area of the trapezoidal region.
b. Find the area of the trapezoidal region when the shorter base is 18 feet.
Solution :
a)
Height = x - 7, bases a = x + 10, b = x
Area of trapezoid = (1/2) h(a + b)
= (1/2) (x - 7) (x + 10 + x)
= (1/2)(x - 7) (2x + 10)
= (1/2) 2(x - 7) (x + 5)
= (x - 7)(x + 5)
= x2 + 5x - 7x - 35
= x2 - 2x - 35
Area of trapezoid = x2 - 2x - 35 square units
b) Shorter base x = 18 ft
x + 10 = 18 + 10 ==> 28 ft
x - 7 = 18 - 7 ==> 11 ft
= (1/2) 11(28 + 18)
= (1/2) x 11 x 46
= 11 x 23
= 253 sqaure ft
Example 11 :
The football field is rectangular
a. Write a polynomial that represents the area of the football field.
b. Find the area of the football field when the width is 160 feet.
Solution :
a) Area of foot bal field = (4x + 20)(10x + 10)
= 40x2 + 40x + 200x + 200
= 40x2 + 240x + 200
b) Applying x = 160
= 40(160)2 + 240(160) + 200
= 40(25600) + 38400 + 200
= 1024000 + 38400 + 200
= 1062600 square ft
Example 12 :
The shipping container is a rectangular prism. Write a polynomial that represents the volume of the container
Solution :
Length = 4x - 3
Width = x + 1
height = x + 2
Volume of the container = length (width)(height)
= (4x - 3) (x + 1)(x + 2)
= (4x - 3)(x2 + 2x + x + 2)
= (4x - 3)(x2 + 3x + 2)
= 4x3 + 12x2 + 8x - 3x2 - 9x - 6
= 4x3 + 9x2 - 9x - 6
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM