Find
(i) (fg)(x)
(II) (f/g)(x)
and state the domain of each. Then evaluate fg and f/g for the given value of x.
Problem 1 :
f(x) = 2x3, g(x) = ∛x; x = -27
Solution :
f(x) = 2x3, g(x) = ∛x and x = -27
(i) (f × g)x = f(x) × g(x)
(f × g)x = 2x3 × ∛x
When, x = -27
(f × g)(-27) = 2(-27)3 × ∛(-27)
= -39366 × ∛(-3 ⋅ -3 ⋅ -3)
= -39366 × (-3)
(f × g)(-27) = -118098
(ii) (f/g)x = f(x)/g(x)
(f/g)(x) = 2x3/∛x
(f/g)(-27) = 2(-27)3/∛(-27)
= -39366 / ∛(-3 ⋅ -3 ⋅ -3)
= -39366/(-3)
(f/g)(-27) = 13122
Problem 2 :
f(x) = x4, g(x) = 3√x; x = 4
Solution :
f(x) = x4 , g(x) = 3√x and x = 4
(i) (f × g)x = f(x) × g(x)
(f × g)x = x4 × 3√x
When, x = 4
(f × g)(4) = (4)4 × 3√4
= 256 × 3√(2 ⋅ 2)
= 256 × 3(2)
= 256 × 6
(f × g)(4) = 1536
(ii) (f/g)x = f(x)/g(x)
(f/g)(4) = (4)4/3√4
= 256/3√(2 ⋅ 2)
= 256/3(2)
(f/g)x = 256/6
Problem 3 :
f(x) = 4x, g(x) = 9x1/2; x = 9
Solution :
f(x) = 4x, g(x) = 9x1/2 and x = 9
(i) (f × g)x = f(x) × g(x)
(f × g)x = 4x × 9x1/2
When, x = 9
(f × g)(9) = 4(9) × 9(9)1/2
= 36 × 9(32)1/2
= 36 × 27
(f × g)(4) = 972
(ii) (f/g)x = f(x)/g(x)
(f/g)(9) = 4(9)/9(9)1/2
= 36/9(32)1/2
(f/g)(x) = 36/27
Problem 4 :
f(x) = 11x3, g(x) = 7x7/3; x = -8
Solution :
f(x) = 11x3, g(x) = 7x7/3 and x = -8
(i) (f × g)x = f(x) × g(x)
(f × g)x = 11x3 × 7x7/3
(f × g)x = 77x3+7/3
(f × g)x = 77x16/3
(f × g)(-8) = 77(-8)16/3
(f × g)(-8) = 77(-2)3(16/3)
(f × g)(-8) = 77(-2)16
(ii) (f/g)x = f(x)/g(x)
(f /g)x = 11x3 / 7x7/3
(f/g)x = (11/7)x3-7/3
(f/g)x = (11/7)x(9-7)/3
(f/g)x = (11/7)x2/3
(f/g)(-8) = (11/7)(-8)2/3
(f/g)(-8) = (11/7)(-2)2
(f/g)(-8) = 44/7
Problem 5 :
f(x) = 7x3/2, g(x) = -14x1/3; x = 64
Solution :
Given, f(x) = 7x3/2
g(x) = -14x1/3
x = 64
(i) (f × g)x = f(x) × g(x)
(f × g)x = 7x3/2 × (-14x1/3)
When, x = 64
(f × g)(64) = 7(64)3/2 × (-14(64)1/3)
(f × g)(64) = 7(82)3/2 × (-14(43)1/3)
= 7(8)3 × (-14(4))
= 7(512) × (-56)
= 3584 × (-56)
(f × g)(64) = -200704
(ii) (f/g)x = f(x)/g(x)
(f/g)(x) = 7(64)3/2/(-14(64)1/3)
(f/g)(64) = 7(82)3/2/(-14(43)1/3)
= 7(8)3/(-14(4))
= 7(512)/(-56)
= 3584/(-56)
(f/g)(64) = -64
Problem 6 :
f(x) = 4x5/4, g(x) = 2x1/2; x = 16
Solution :
Given, f(x) = 4x5/4
g(x) = 2x1/2
x = 16
(i) (f × g)x = f(x) × g(x)
(f × g)x = 4x5/4 × 2x1/2
When, x = 16
(f × g)(16) = 4(16)5/4 × 2(16)1/2
= 4(24)5/4 × 2(42)1/2
= 4(2)5 × 2(4)
= 128 × 8
(f × g)(16) = 1024
(ii) (f/g)x = f(x)/g(x)
(f/g)(x) = 4x5/4/ 2x1/2
(f/g)(x) = 2x5/4 - 1/2
(f/g)(x) = 2x3/4
(f/g)(16) = 2(16)3/4
(f/g)(16) = 2(24)3/4
(f/g)(16) = 2(23)
(f/g)(16) = 16
Problem 7 :
Find (fg)(2) when f(x) = x - 6 and g(x) = -3x2 + 11x - 7
a) -152 b) 24 c) -12 d) -76
Solution :
f(x) = x - 6 and g(x) = -3x2 + 11x - 7
(f g)(2) = f(2) g(2)
Evaluating f(2) : f(x) = x - 6 f(2) = 2 - 6 = -4 |
Evaluating g(2) : g(x) = -3x2 + 11x - 7 g(2) = -3(2)2 + 11(2) - 7 = -3(4) + 22 - 7 = -12 + 22 - 7 = -19 + 22 = 3 |
= -4(3)
= -12
So, the value of (f g)(2) is -12.
Problem 8 :
Find (f/g) (-5) when f(x) = 4x - 2 and g(x) = 5x2 + 14x + 2.
a) - 22/57 b) 4/57 c) 5/57 d) 5/18
Solution :
f(x) = 4x - 2 and g(x) = 5x2 + 14x + 2.
(f/g) (-5) = f(-5) / g(-5)
Evalauting f(-5) : f(x) = 4x - 2 f(-5) = 4(-5) - 2 = -20 - 2 = -22 |
Evalauting g(-5) : g(x) = 5x2 + 14x + 2. g(-5) = 5(-5)2 + 14(-5) + 2 = 5(25) - 60 + 2 = 50 - 60 + 2 = 52 - 60 = -8 |
(f/g) (-5) = -22 / (-8)
= 11/4
Problem 9 :
The graphs of two functions f and g are shown. Find the following :
a) (f - g) (-1)
b) (f g) (1)
c) The domain of (f + g) (x) and the domain of (f/g) (x)
Solution :
a)
(f - g) (-1) = f(-1) - g(-1)
= 3 - 2
= 1
b)
(f g) (1) = f(1) g(1)
= 5 (0)
= 0
c) By observing the graph, the domain of the function f is [-1, 6]
By observing the graph, the domain of the function g is [-3, 4]
The domain of (f + g) (x) = [-1, 6] n [-3, 4] is [-1, 4].
Domain of (f/g) (x) :
g(1) = 0
In the domain [-1, 4] we should exclude the value 1, so the domain is [-1, 1) and (1, 4].
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM