Given,sin4 x dx=sin2 x2 dx=1 - cos 2x22 dx=14(1 - cos 2x)2 dx=1412+( cos 2x)2- 2(1)(cos 2x)dx=141 + cos22x - 2 cos 2xdx=141 +1 + cos 4x2- 2 cos 2x dx=14dx +18(1 + cos 4x) dx -24cos 2x dx=14dx +18dx +18cos 4x dx -12cos 2x dx=x4+x8+18sin 4x4-12sin 2x2+ C=2x + x8+132 sin 4x -14 sin 2x + C=3x8-14 sin 2x +132 sin 4x + C
Problem 4 :
sin5 x dx
Solution :
Given,sin5 x dx=sin4 x · sin x dx=sin2 x2· sin x dx=1 - cos2 x2· sin x dxu = cos x, du =-sin x dx=-1 - u22·du=-12+ u4- 2u2 du=-du -u4 du +2u2 du=-u -u55+2u33+ C=-cos x -15(cos x)5+23(cos x)3+ C=-cos x -15cos5x +23cos3x + C
Problem 5 :
tan3 x dx
Solution :
tan3x dx=sin3xcos3x dx=sin2xcos3xsin x dx=1-cos2xcos3xsin x dxu=cos x and du=-sinx dxsin x dx=-du=1-u2u3(-du)=1u3-1u(-du)=1u-1u3du= ln |u|-u-2-2+C= ln |u|+12u2+C= ln |cosx|+12cos2x+C= ln |cosx|+sec2x2+C