Given,sin6 x cos5 x dx=sin6 x cos4x · cos x dx=sin6 x 1 - sin2x2cos x dxsin x = tcos x dx = dtsin6 x cos5 x dx =t6 1 - t22 dt=t61 +t22- 2(1)t2dt=t61 + t4- 2t2dt=t6+ t10- 2t8 dt=t6 dt +t10 dt -2t8 dt=t77+t1111-2t99+ C=17sin7x+111sin11x-29sin9x+ C
Problem 4 :
sin2 x cos2 x dx
Solution :
Given,sin2 x cos2 x dx=1 - cos 2x2·1 + cos 2x2 dx=12·12(1 - cos 2x)·(1 + cos 2x) dx=141 - cos2 2x dx=14dx -cos22x dx=14x -1 + cos 4x2dx=14x -12dx +cos 4xdx=14x -12x +14 sin 4x+ C=14x -12x -18 sin 4x+ C