Classify into monomials, binomials and trinomials.
Monomial :
A polynomial with exactly one term is called a monomial.
Binomial :
A polynomial with exactly two terms is called a binomial.
Trinomial :
A polynomial with exactly three terms is called a trinomial.
Classify the following polynomials based on number of terms.
Problem 1 :
4y – 7z
Solution :
4y – 7z
Number of terms = 2
So, 4y – 7z is a binomial.
Problem 2 :
y2
Solution :
y2
Number of terms = 1
So, y2 is a monomial.
Problem 3 :
x + y - xy
Solution :
x + y - xy
Number of terms = 3
So, x + y - xy is a trinomial.
Problem 4 :
100
Solution :
100
Number of terms = 1
So, 100 is a monomial.
Problem 5 :
ab – a - b
Solution :
ab - a - b
Number of terms = 3
So, ab - a - b is a trinomial.
Problem 6 :
5 – 3t
Solution :
5 – 3t
Number of terms = 2
So, 5 – 3t is a binomial.
Problem 7 :
4p2q – 4pq2
Solution :
4p2q – 4pq2
Number of terms = 2
So, 4p2q – 4pq2 is a binomial.
Problem 8 :
7mn
Solution :
7mn
Number of terms = 1
So, 7mn is a monomial.
Problem 9 :
z2 – 3z + 8
Solution :
z2 – 3z + 8
Number of terms = 3
So, z2 – 3z + 8 is a trinomial.
Problem 10 :
a2 + b2
Solution :
a2 + b2
Number of terms = 2
So, a2 + b2 is a binomial.
Problem 11 :
z2 + z
Solution :
z2 + z
Number of terms = 2
So, z2 + z is a binomial.
Problem 12 :
1 + x + x2
Solution :
1 + x + x2
Number of terms = 3
So, 1 + x + x2 is a trinomial.
Simplify the following by combining the like terms and then write whether the expression is a monomial, a binomial or a trinomial.
Problem 1 :
3x2yz2 – 3xy2z + x2yz2 + 7xy2z
Solution :
Given, 3x2yz2 – 3xy2z + x2yz2 + 7xy2z
= (3x2yz2 + x2yz2) + (7xy2z – 3xy2z)
= (3 + 1) x2yz2 + (7 – 3) xy2z
= 4x2yz2 + 4xy2z
So, the expression is binomial.
Problem 2 :
x4 + 3x3y + 3x2y2 – 3x3y – 3xy3 + y4 – 3x2y2
Solution :
x4 + 3x3y + 3x2y2 – 3x3y – 3xy3 + y4 – 3x2y2
= 3x3y – 3x3y + 3x2y2 – 3x2y2 – 3xy3 + x4 + y4
= – 3xy3 + x4 + y4
So, the expression is trinomial.
Problem 3 :
p3q2r + pq2r3 + 3p2qr2 – 9p2qr2
Solution :
p3q2r + pq2r3 + 3p2qr2 – 9p2qr2
= p3q2r + pq2r3 – 6p2qr2
So, the expression is trinomial.
Problem 4 :
2a + 2b + 2c – 2a – 2b – 2c – 2b + 2c + 2a
Solution :
2a + 2b + 2c – 2a – 2b – 2c – 2b + 2c + 2a
= (2a – 2a + 2a) + (2b – 2b – 2b) + (2c – 2c + 2c)
= 2a – 2b + 2c
So, the expression is trinomial.
Problem 5 :
50x3 – 21x + 107 + 41x3 – x + 1 – 93 + 71x – 31x3
Solution :
= 50x3 – 21x + 107 + 41x3 – x + 1 – 93 + 71x – 31x3
= (50x3 + 41x3 – 31x3) + (-21x – x + 71x) + (107 + 1 – 93)
= 60x3 + 49x + 15
So, the expression is trinomial.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM