IDENTIFY INOT MONOMIAL BINOMIAL AND TRINOMIAL

Classify into monomials, binomials and trinomials.

Monomial :

A polynomial with exactly one term is called a monomial.

Binomial :

A polynomial with exactly two terms is called a binomial.

Trinomial :

A polynomial with exactly three terms is called a trinomial.

Classify the following polynomials based on number of terms.

Problem 1 :

4y – 7z

Solution :

4y – 7z

Number of terms = 2

So, 4y – 7z is a binomial.

Problem 2 :

y2

Solution :

y2

Number of terms = 1

So, y2 is a monomial.

Problem 3 :

x + y - xy

Solution :

x + y - xy

Number of terms = 3

So, x + y - xy is a trinomial.

Problem 4 :

100

Solution :

100

Number of terms = 1

So, 100 is a monomial.

Problem 5 :

ab – a - b

Solution :

ab - a - b

Number of terms = 3

So, ab - a - b is a trinomial.

Problem 6 :

5 – 3t

Solution :

5 – 3t

Number of terms = 2

So, 5 – 3t is a binomial.

Problem 7 :

4p2q – 4pq2

Solution :

4p2q – 4pq2

Number of terms = 2

So, 4p2q – 4pq2 is a binomial.

Problem 8 :

7mn

Solution :

7mn

Number of terms = 1

So, 7mn is a monomial.

Problem 9 :

z2 – 3z + 8

Solution :

z2 – 3z + 8

Number of terms = 3

So, z2 – 3z + 8 is a trinomial.

Problem 10 :

a2 + b2

Solution :

a2 + b2

Number of terms = 2

So, a2 + b2 is a binomial.

Problem 11 :

z2 + z

Solution :

z2 + z

Number of terms = 2

So, z2 + z is a binomial.

Problem 12 :

1 + x + x2

Solution :

1 + x + x2

Number of terms = 3

So, 1 + x + x2 is a trinomial.

Simplify the following by combining the like terms and then write whether the expression is a monomial, a binomial or a trinomial.

Problem 1 :

3x2yz2 – 3xy2z + x2yz2 + 7xy2z

Solution :

Given, 3x2yz2 – 3xy2z + x2yz2 + 7xy2z

= (3x2yz2 + x2yz2) + (7xy2z – 3xy2z)

= (3 + 1) x2yz2 + (7 – 3) xy2z

= 4x2yz2 + 4xy2z

So, the expression is binomial.

Problem 2 :

x4 + 3x3y + 3x2y2 – 3x3y – 3xy3 + y4 – 3x2y2

Solution :

x4 + 3x3y + 3x2y2 – 3x3y – 3xy3 + y4 – 3x2y2

= 3x3y – 3x3y + 3x2y2 – 3x2y2 – 3xy3 + x4 + y4

= – 3xy3 + x4 + y4

So, the expression is trinomial.

Problem 3 :

p3q2r + pq2r3 + 3p2qr2 – 9p2qr2

Solution :

p3q2r + pq2r3 + 3p2qr2 – 9p2qr2

= p3q2r + pq2r3 – 6p2qr2

So, the expression is trinomial.

Problem 4 :

2a + 2b + 2c – 2a – 2b – 2c – 2b + 2c + 2a

Solution :

2a + 2b + 2c – 2a – 2b – 2c – 2b + 2c + 2a

= (2a – 2a + 2a) + (2b – 2b – 2b) + (2c – 2c + 2c)

= 2a – 2b + 2c

So, the expression is trinomial.

Problem 5 :

50x3 – 21x + 107 + 41x3 – x + 1 – 93 + 71x – 31x3

Solution :

= 50x3 – 21x + 107 + 41x3 – x + 1 – 93 + 71x – 31x3

= (50x3 + 41x3 – 31x3) + (-21x – x + 71x) + (107 + 1 – 93)

= 60x3 + 49x + 15

So, the expression is trinomial.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More