HOW TO TELL IF LINES ARE PARALLEL OR PERPENDICULAR WITH EQUATIONS

  • If two lines are parallel, then their slopes will be equal

m1 = m2

  • If two lines are perpendicular, then product of their slopes will be equal to -1.

m1 x m2 = -1

parallelandperpendicularlines

Examine whether these lines are parallel or perpendicular !

Problem 1 :

2x - y + 7 = 0 and 4y - 2x + 3 = 0

Solution :

Given, 2x - y + 7 = 0 and 4y - 2x + 3 = 0

2x - y + 7 = 0

-y = -7 - 2x

y = -(-7 - 2x)

y = 2x + 7

Slope intercept equation of a line y = mx + b, we get

m = slope

m1 = 2

4y - 2x + 3 = 0

4y = 2x - 3

y = 24x - 34y = 12x - 34

m2 = 1/2

The slopes are m1 = 2 and m=  1/2.

= 2 × 1/2

= 1

Since, the slope of the lines m1 and m2 are neither.

Problem 2 :

y = (-2/9)x - 23 and 2y - 9x + 3 = 0

Solution :

Given, y = (-2/9)x - 23 and 2y - 9x + 3 = 0

y = (-2/9)x - 23

Slope intercept equation of a line y = mx + b, we get

m = slope

m1 = -2/9

2y - 9x + 3 = 0

2y = 9x - 3

y = 92x - 32

m2 = 9/2

The slopes are m1 = -2/9 and m=  9/2.

= -2/9 × 9/2

= -1

Since, the slope of the lines m1 and m2 are perpendicular.

Problem 3 :

2x + 5y + 17 = 0 and 5x = 2y - 13

Solution :

Given, 2x + 5y + 17 = 0 and 5x = 2y - 13

2x + 5y + 17 = 0 

5y = -2x - 17

y = -25x - 175

Slope intercept equation of a line y = mx + b, we get

m = slope

m1 = -2/5

5x = 2y - 13

2y = 5x + 13

y = 52x + 132

m2 = 5/2

The slopes are m1 = -2/5 and m2 =  5/2.

= -2/5 × 5/2

= -1

Since, the slope of the lines m1 and m2 are perpendicular.

Problem 4 :

(1/2)x + (1/3)y - 4 = 0 and 3y - 2x + 3 = 0 

Solution :

Given, (1/2)x + (1/3)y - 4 = 0

13y = -12x + 4y = 3-12x + 4y = -32x + 12

Slope intercept equation of a line y = mx + b, we get

m = slope

m1 = -3/2

3y - 2x + 3 = 0 

3y = 2x - 3

y = 23x - 33y = 23x - 1

m2 = 2/3

The slopes are m1 = -3/2 and m=  2/3.

= -3/2 × 2/3

= -1

Since, the slope of the lines m1 and m2 are perpendicular.

Problem 5 :

3x - y + 7 = 0  and y - 2x - 43 = 0 

Solution :

Given, 3x - y + 7 = 0 and y - 2x - 43 = 0

3x - y + 7 = 0

-y = -7 - 3x

y = -(-7 - 3x)

y = 3x + 7

Slope intercept equation of a line y = mx + b, we get

m = slope

m1 = 3

y - 2x - 43 = 0

y = 2x + 43

m2 = 2

The slopes are m1 = 3 and m2 =  2.

Since, the slope of the lines m1 and m2 are neither.

Problem 6 :

x - 5y + 9 = 0  and 4y - x + 3 = 0 

Solution :

Given, x - 5y + 9 = 0  and 4y - x + 3 = 0 

x - 5y + 9 = 0

-5y = -x - 9

y = -15x - 95

Slope intercept equation of a line y = mx + b, we get

m = slope

m1 = -1/5

4y - x + 3 = 0 

4y = x - 3

y = 14x - 34

m2 = 1/4

The slopes are m1 = -1/5 and m2 =  1/4.

Since, the slope of the lines m1 and m2 are neither.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More