Problem 1 :
If f(x) = 2x - 6 and g(x) = x2 - 5x + 6, find f(x)/g(x).
Solution:
Problem 2 :
If f(x) = -7x + 2 and g(x) = x3 + x2, find (g · f)(x).
Solution:
(g · f)(x) = g(x)·f(x)
(g · f)(x) = (x3 + x2) · (-7x + 2)
= -7x4 + 2x3 - 7x3 + 2x2
= -7x4 - 5x3 + 2x2
Problem 3 :
If f(x) = 4x - 8 and g(x) = -x2 + 6x - 8; find the following.
i) f(x) · g(x) ii) (g/f)(x)
Solution:
f(x) · g(x) = (4x - 8) (-x2 + 6x - 8)
= -4x3 + 24x2 - 32x + 8x2 - 48x + 64
= -4x3 + 32x2 - 80x + 64
f(x) · g(x) = -4(x3 - 8x2 + 20x + 16)
ii) (g/f)(x)
Problem 4 :
If f(x) = 10x + 3 and g(x) = x + 15, find (f/g)(6).
Solution:
Problem 5 :
If f(x) = -3x - 9 and g(x) = 5x2 + 1, find g(-3) · f(-3).
Solution:
g(x) · f(x) = (5x2 + 1)·(-3x - 9)
g(-3) · f(-3) = (5(-3)2 + 1)·(-3(-3) - 9)
= (46)·(0)
= 0
Problem 6 :
If f(x) = 5 - x and g(x) = 12 + 7x2; find the following.
i) (f · g)(-2) ii) g(4)/f(4)
Solution:
(f · g)(x) = (5 - x) · (12 + 7x2)
(f · g)(-2) = (5 - (-2)) · (12 + 7(-2)2)
= (7) (40)
= 280
ii) g(4)/f(4)
Solution:
Problem 7 :
f(x) = 2x3 - 5x2 and g(x) = 2x - 1
Find (f · g)(x).
Solution:
(f · g)(x) = f(x)·g(x)
= (2x3 - 5x2) · (2x - 1)
= 4x4 - 2x3 - 10x3 + 5x2
= 4x4 - 12x3 + 5x2
Problem 8 :
g(t) = t² + 3 and h(t) = 4t - 3
Find (g · h)(-1)
Solution:
(g · h)(t) = (t² + 3) · (4t - 3)
(g · h)(-1) = ((-1)² + 3) · (4(-1) - 3)
= (1 + 3) · (-4 - 3)
= 4 · (-7)
= -28
Problem 9 :
g(a) = -3a2 - a and h(a) = -2a - 4
Find (g/h)(a)
Solution:
Problem 10 :
f(x) = 3x - 1 and g(x) = x2 - x
Find (f/g)(x)
Solution:
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM