HOW TO FIND THE DERIVATIVE OF A INVERSE FUNCTION

The Derivative of an Inverse Function :

Let f be a differentiable function whose inverse function f-1 is also differentiable. Then providing that the denominator is not zero.

Problem 1 :

Let f(x) = x2 - (3/x)

a) What is the value of f-1(8) ?

b) What is the value of (f-1)' (8) ?

Solution :

In a function y and f(x) both are equal. That is,

y = f(x)

f-1(y) = x

a)  Given that,

f(x) = x2 - (3/x)

In f-1(8), y = 8. Then f(x) = 8

8 = (x3 - 3)/x

8x = x3 - 3

x3 - 8x - 3 = 0

Solving using synthetic division, we get

deriviative-of-inverse-fun-q1

3 is a solution. So, the value of f-1(8) is 3.

b) 

Problem 2 :

If f(2) = 5 and f'(2) = 1/4, find (f-1)' (5)

Solution :

(f-1)' (x) = 1/f' [(f-1) (x)]

Given that, f(2) = 5

f-1(5) = 2

Given that, f'(2) = 1/4

(f-1)' (1/4) = 2

(f-1)' (5) = 1/f' [(f-1) (5)]

Applying the value of (f-1) (5) = 2 in above, we get

= 1/f' (2)

Applying the value of f' (2) = 4 in above,

= 1/(1/4)

= 1 (4/1)

= 4

So, the answer is 4.

Problem 3 :

Let f and g be functions that are differentiable everywhere. If g is the inverse function of f and if g(3) = 4 and f'(4) = 3/2, then g'(3) ?

a)  1/4    b)  1/3    c)  2/3    d)  4/3

Solution :

Given that g(3) = 4,

Since g and f are inverse to each other.

f(g(x)) x

f'(g(x)) g'(x) = 1

f'(g(3)) g'(3) = 1

Applying the value of g(3), we get

f'(4) g'(3) = 1

g'(3) = 1/f'(4)

Applying the value of f'(4), we get

g'(3) = 1/(3/2)

= 1 x (2/3)

g'(3) = 2/3

So, the answer is option c.

Problem 4 :

If f(-3) = 2 and f'(-3) = 3/4, then (f-1)' (2) = ?

a)  1/2   b)  4/3     c)  3/2     d)  -3/4

Solution :

Given that f(-3) = 2

f-1(2) = -3

(f-1)' (x) = 1/f' [(f-1) (x)]

(f-1)' (2) = 1//f' [(f-1) (2)]

Applying the value of (f-1) (2) = -3, we get

= 1/f' (-3)

Applying the value of f' (-3) = 3/4, we get

= 1/(3/4)

= 4/3

So, the answer is 4/3.

Problem 5 :

If f(x) = x3 - x + 2, then (f-1)'(2) = ?

Solution :

f(x) = x3 - x + 2

f'(x) = 3x2 - 1 + 0

 f'(x) = 3x2 - 1

(f-1)'(2) = 1/f'( (f-1)(2) ) ----(1)

Finding the value of  (f-1)(2) :

2 = x3 - x + 2

0 = x3 - x

x(x2 - 1) = 0

x = 0, x = 1 and -1.

So, the value of (f-1)(2) are 0, 1 and -1.

Applying these values one by one, we get

(f-1)'(2) = 1/f' (0 )

Evaluating f'(0) from f'(x) = 3x2 - 1 :

 f'(0) = 3(0)2 - 1 ==> -1

Applying this value in (1), we get

= 1/(-1)

= -1

Evaluating f'(1) from f'(x) = 3x2 - 1 :

 f'(1) = 3(1)2 - 1 ==> 2

Applying this value in (1), we get

= 1/2

Evaluating f'(-1) from f'(x) = 3x2 - 1 :

 f'(-1) = 3(-1)2 - 1 ==> 2

Applying this value in (1), we get

= 1/2

Problem 6 :

If f(x) = sin x, then (f-1)' (√3/2) = ?

a)  1/2   b)  2√3/3    c)  √3    d)  2

Solution :

(f-1)' (√3/2) = 1/f'( (f-1) (√3/2) ) ---(1)

f(x) = sin x

Finding (f-1) (√3/2) :

√3/2 = sin x

x = sin-1(√3/2)

x = π/3

 (f-1) (√3/2)  = π/3

Applying this value in (1), we get

(f-1)' (√3/2) = 1/f'(π/3)

from f(x) = sin x, f'(x) = cos x

f'(π/3) = cos (π/3)

(f-1)' (√3/2) = 1/2

So, the answer is 1/2.

Problem 7 :

If f(x) = 1+ ln x, then (f-1)' (2)

a)  -1/e    b)  1/e    c)  -e    d) e

Solution :

If (x) = 1+ ln x

(f-1)' (2) = 1/f'((f-1) (2))  ----(1)

Finding (f-1) (2)) :

f (x) = 1 + ln x

2 = 1 + ln x

1 = ln x

x = e1

x = e

 (f-1) (2)) = e

The value of  (f-1) (2)) is e.

(f-1)' (2) = 1/f'(e)

From f(x) = 1 + ln x

f'(x) = 0 + 1/x

f'(x) = 1/x

f'(e) = 1/e

Then, (f-1)' (2) = 1/f'(e)

(f-1)' (2) = 1/(1/e)

= e

So, the answer is e.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More