HOW TO FIND MAXIMUM AND MINIMUM VALUE OF A QUADRATIC EQUATION

The graphical form of a quadratic function will be a parabola (u shpae). In which the maximum and minimum value will be there at vertex.

To find the maximum or minimum value from the quadratic equation, we have the following ways.

(i) Converting into the vertex form

(ii) Using formula

Converting the quadratic function into vertex form :

The vertex form of a quadratic polynomial is 

y = a(x - h)2 + k

Here (h, k) is vertex.

  • If a > 0, then the parabola opens up.
  • If a < 0, then the parabola opens down.

Using formula :

Compare the given equation with the general form of a quadratic equation 

y = ax2 + bx + c

To find x-coordinate of vertex, we can use the formula

x = -b/2a

This value can be applied in the given equation to get the value of y.

So, minimum or maximum value is the value of y.

Find the maximum or minimum value of the following function.

Problem 1 :

y = –x2 + 2x + 3

Solution :

Method 1 :

y = –x2 + 2x + 3

Factoring negative sign.

y = –[x2 - 2x - 3]

Write the coefficient of x as a multiple of 2.

y = –[x2 - 2 ⋅ ⋅ 1 + 12 - 12 - 3]

y = –[(x-1)2 - 1 - 3]

y = –[(x-1)2 - 4]

y = –(x-1)2 + 4

It is exactly in the form of 

y = a(x - h)2 + k

Here a = -1 < 0, then the parabola opens down.

Vertex is at (1, 4). So, minimum is at x = 1 and the minimum value = 4.

Method 2 :

y = –x2 + 2x + 3

a = -1, b = 2 and c = 3

x = -b/2a

x = -2/2(-1)

x = 1

By applying the value of x in the given equation, we get

y = -(1)2 + 2(1) + 3

y = -1 + 2 + 3

y = 4

So, the minimum point is at (1, 4).

Minimum value is y = 4

Problem 2 :

y = 2x2 + 4x – 3

Solution :

y = 2x2 + 4x – 3

Factoring 2, we get

y = 2x2 +2x- 32y=2x2- 2·x·1+12-12-32y=2(x-1)2- 12-32y=2(x-1)2- 52y=2(x-1)2- 252y=2(x-1)2- 5

y = 2(x + 1)2 - 5

Here (h, k) is (-1, -5).

Vertex is at (-1, -5).

So,

minimum is at x = -1 and 

minimum value = -5.

Problem 3 :

y = –3x2 + 4x 

Solution :

y = –3[x2 + 4x/3]

y = -3x2 - 43xy=-3x2- 2 ·x ·23+232-232y=-3x -232-232y=-3x -232-49y=-3x -232+43

Here (h, k) is (2/3, 4/3).

Vertex is at (2/3, 4/3).

So,

minimum is at x = 2/3 and 

minimum value = 4/3

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More