Problem 1 :
If f(x) = 2x√x, then for which of the following values of x does f(x) = x?
A) 1/4 B) 1/2 C) 2 D) 4 E) 8
Problem 2 :
If f(a) = a-3 - a-2, then f(1/3) =
A) -1/6 B) 1/6 C) 6 D) 9 E) 18
Problem 3 :
If f(x) = x² + 3x - 4, then f(2 + a) =
A) a² + 7a + 6 B) 2a² - 7a - 12 C) a² + 12a + 3
D) 6a² + 3a + 7 E) a² - a + 6
Problem 4 :
If f(x) = x² and g(x) = x + 3, then g(f(x)) =
A) x + 3 B) x² + 6 C) x + 9 D) x² + 3 E) x³ + 3x²
Problem 5 :
If f(x) = x/2, then f(x²) √ (f(x))² =
A) x³/4 B) 1 C) 2x² D) 2 E) 2x
Problem 6 :
If f(x) = √x + 1, and if the domain of x is the set {3, 8, 15}, then which of the following sets indicates the range of f(x)?
A) {-4, -3, -2, 2, 3, 4} B) {2, 3, 4} C) {4, 9, 16}
D) {3, 8, 15} E) {all real numbers}
Problem 7 :
If f(a) = 6a - 4, and if the domain of a consists of all real numbers defined by the inequality -6 < a < 4, then the range of f(a) contains all of the following members EXPECT.
A) -24 B) √1/6 C) 0 D) 4 E) 20
Problem 8 :
If the range of the function f(x) = x² - 2x - 3 is the set R = {0}, then which of the following sets indicates the largest possible domain of x?
A) {-3} B) {3} C) {-1} D) {3, -1} E) all real numbers
Problem 9 :
If f(x) = √x² - 5x + 6, which of the following indicates the set of all values of x at which the function is NOT defined?
A) {x| x < 3} B) {x| 2 < x < 3} C) {x| x < -2}
D) {x| -3 < x < 2} E) {x| x < -3}
Problem 10 :
If f(x) = ∛1/x, then the largest possible domain of x is the set that includes
A) all non zero integers
B) all non negative real numbers
C) all real numbers except 0 D) all positive real numbers
E) all real numbers
1) x = 0 or x = 1/4, option (A)
2) f(1/3) = 18, option (E)
3) f(2 + a) = a² + 7a + 6, option (A)
4) g(f(x)) = x² + 3, option (D)
5) f(x²) √ (f(x))² = x³/4, option (A)
6) {2, 3, 4}, option (B)
7) set R = {b|-40 < b < 20}, option (E)
8) {3, -1}, option (D)
9) 2 < x < 3, option (B)
10) all real numbers except 0, option (C)
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM