Problem 1 :
Given that sin A = 4/5, 0 < A < 90° and that cos B = 2/3, 0 < B < 90°, find without using a calculator the value of
a) tan A b) sin B c) cos (A + B) d) sin (A + B)
Solution:
We have,
sin A = 4/5 and cos B = 2/3
a) tan A = sin A / cos A
sin A = 4/5 and cos A = 3/5
tan A = (4/5)/(3/5)
tan A = 4/3
b)
c)
cos(A + B) = cosA cosB - sinA sinB
d)
sin(A + B) = sinA cosB + sinB cosA
Problem 2 :
Given that cosec C = 5/3, 0 < C < 90° and that sin D = 5/13, 90° < D < 180°, find without using a calculator the value of
a) cos C b) cos D c) sin (C - D)
Solution:
We have,
cosec C = 5/3 and sin D = 5/13
a)
b)
c)
sin(C - D) = sinC cosD - cosC sinD
Problem 3 :
a. Given that cos A = 7/9, 0 < A < 90°, find the exact value of sin A/2 without using a calculator.
Solution:
b. Given that cos B = -3/8, 90° < B < 180°, find the value of cos B/2, giving your answer in the form k√5.
Solution:
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM