FROM THE GIVEN VALUES OF TWO TRIG FUNCTIONS FIND THE VALUE

Problem 1 :

Given that sin A = 4/5, 0 < A < 90° and that cos B = 2/3, 0 < B < 90°, find without using a calculator the value of

a) tan A     b) sin B     c) cos (A + B)     d) sin (A + B)

Solution:

We have,

sin A = 4/5 and cos B = 2/3

cos A=1-sin2Acos A=1-452=1-1625=25-1625=925cos A=35

a) tan A = sin A / cos A

sin A = 4/5 and cos A = 3/5

tan A = (4/5)/(3/5)

tan A = 4/3

b)

cos B=23sin B=1-cos2Bsin B=1-232=1-49=9-49=59sin B=53

c)

cos(A + B) = cosA cosB - sinA sinB

=35×23-45×53=25-4515cos(A+B)=6-4515

d)

sin(A + B) = sinA cosB + sinB cosA

=35×23+53×35=25+55sin(A+B)=2+55

Problem 2 :

Given that cosec C = 5/3, 0 < C < 90° and that sin D = 5/13, 90° < D < 180°, find without using a calculator the value of

a) cos C     b) cos D     c) sin (C - D)     

Solution:

We have,

cosec C = 5/3 and sin D = 5/13

sin C=1cosec Csin C=35

a)

cos C=1-sin2C=1-352=1-925=25-925=1625cos C=45

b)

cos D=1-sin2D=1-5132=1-25169=169-25169=144169cos D=1213

c)

sin(C - D) = sinC cosD - cosC sinD

=35×1213-45×513=3665-2065sin(C-D)=1665

Problem 3 :

a.   Given that cos A = 7/9, 0 < A < 90°, find the exact value of sin A/2 without using a calculator.

Solution:

sinA2=±1-cos A2=±1-792=±9-792=±292=±218=±19sinA2=13

b. Given that cos B = -3/8, 90° < B < 180°, find the value of cos B/2, giving your answer in the form k√5.

Solution:

cosB2=1+cos B2=1+-382=1-382=582=516cosB2=54

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More