a2 - b2 = (a + b)(a - b)
Expand
Problem 1 :
x2 - 16
Solution :
= x2 - 16
= x2 - 42
Here a = x, b = 4
a² - b² = (a + b) (a - b)
x² - 4² = (x + 4) (x - 4)
Problem 2 :
y² - 49
Solution :
= y2 - 49
= y2 - 72
Here a = y, b = 7
y² - 7² = (y + 7) (y - 7)
Problem 3 :
x² - 25
Solution :
= x2 - 25
= x2 - 52
Here a = x, b = 5
x² - 5² = (x + 5) (x - 5)
Problem 4 :
4x² - 25
Solution :
= 4x2 - 25
= 22x2 - 52
= (2x)2 - 52
Here a = 2x and b = 5
(2x)² - 5² = (2x + 5) (2x - 5)
Problem 5 :
16 - y²
Solution :
(16 - y²) can be written as 4² - y²
Here a = 4 and b = y
4² - y² = (4 + y) (4 - y)
Problem 6 :
m² - 36
Solution:
= m2 - 36
= m2 - 62
Here a = m, b = 6
m² - 6² = (m + 6) (m - 6)
Problem 7 :
4m² - 49
Solution :
(4m² - 49) can be written as (2m)² - 7²
Here a = 2m and b = 7
(2m)² - 7² = (2m + 7) (2m - 7)
Problem 8 :
9m² - 16
Solution:
(4m² - 49) can be written as (3m)² - 4²
Here a = 3m and b = 4
(3m)² - 4² = (3m + 4) (3m - 4)
Problem 9 :
Find the product using suitable identity :
(a + 3)(a - 3)(a2 + 9)
Solution:
= (a + 3)(a - 3)(a2 + 9)
= (a2 - 32)(a2 + 9)
= (a2 - 9)(a2 + 9)
= (a2)2 - 92
= a4 - 81
Evaluate the following :
Problem 9 :
Find the product using suitable identity :
a) 1002 - 982
b) 732 - 672
c) 1452 - 1402
d) 6512 - 6412
Solution:
a) 1002 - 982
= (100 + 98)(100 - 98)
= 198 (2)
= 396
b) 732 - 672
= (73 + 67)(73 - 67)
= 140 (6)
= 840
c) 1452 - 1402
= (145 + 140)(145 - 140)
= 285 (5)
= 1425
d) 6512 - 6412
= (651 + 641)(651 - 641)
= 1292 (10)
= 12920
Find the missing sides of the following.
Problem 10 :
Solution :
Using Pythagorean theorem,
AC2 = AB2 + BC2
152 = 132 + x2
x2 = 152 - 132
x2 = (15 + 13) (15 - 13)
x2 = 28 (2)
x = √28 x 2
= √2 x 2 x 7 x 2
= 2 √(2 x 7)
= 2 √14
Problem 11 :
Solution :
Using Pythagorean theorem,
322 = 222 + x2
x2 = 322 - 222
x2 = (32 + 22) (32 - 22)
x2 = 54 (10)
x = √54 x 10
= √3 x 3 x 3 x 2 x 2 x 5
= 3 x 2 √(3 x 5)
= 6 √15
Problem 12 :
Solution :
Using Pythagorean theorem,
472 = x2 + 422
x2 = 472 - 422
x2 = (47 + 42) (47 - 42)
x2 = 89 (5)
x = √(89 x 5)
= √445
Problem 13 :
Solution :
Using Pythagorean theorem,
832 = x2 + 772
x2 = 832 - 772
x2 = (83 + 77) (83 - 77)
x2 = 160 (6)
x = √(160 x 6)
= √4 x 4 x 2 x 5 x 2 x 3
= (4 x 2) √(5 x 3)
= 8 √15
Problem 14 :
Simplify (y + 7)(y − 7) − (y + 7)
Solution :
= (y + 7)(y − 7) − (y + 7)
= y2 - 72 - (y + 7)
= y2 - 49 - y - 7
= y2 - y - 49 - 7
= y2 - y - 56
Problem 15 :
Simplify (x + y)2 − (x − y)(x + y)
Solution :
= (x + y)2 − (x − y)(x + y)
= x2 + 2xy + y2 - (x2 - y2)
= x2 + 2xy + y2 - x2 + y2
= 2xy + 2y2
= 2y(x + y)
Problem 16 :
(2x + 3y)2 − (2x − 3y)(2x + 3y)
Solution :
= (2x + 3y)2 − (2x − 3y)(2x + 3y)
= (2x)2 + 2(2x)(3y) + (3y)2 - [(2x)2 - (3y)2]
= 4x2 + 12xy + 9y2 - [4x2 - 9y2]
= 4x2 + 12xy + 9y2 - 4x2 + 9y2
= 12xy + 18y2
Problem 17 :
(a − 1)(a + 1) + (a + 1)2 + (a − 1)2
Solution :
= (a − 1)(a + 1) + (a + 1)2 + (a − 1)2
= a2 - 12 + a2 + 2a + 12 + a2 - 2a + 12
= 3a2 - 1 + 2a + 1 - 2a + 1
= 3a2 + 1
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM