FORMULA FOR A SQUARE MINUS B SQUARE

a- b2 = (a + b)(a - b)

Expand 

Problem 1 :

x2 - 16

Solution :

= x2 - 16

= x2 - 42

Here a = x, b = 4

a² - b² = (a + b) (a - b)

x² - 4² = (x + 4) (x - 4)

Problem 2 :

y² - 49

Solution :

= y2 - 49

= y2 - 72

Here a = y, b = 7

y² - 7² = (y + 7) (y - 7)

Problem 3 :

x² - 25

Solution :

= x2 - 25

= x2 - 52

Here a = x, b = 5

x² - 5² = (x + 5) (x - 5)

Problem 4 :

4x² - 25

Solution :

= 4x2 - 25

= 22x2 - 52

= (2x)2 - 52

Here a = 2x and b = 5

(2x)² - 5² = (2x + 5) (2x - 5)

Problem 5 :

16 - y²

Solution :

(16 - y²) can be written as 4² - y²

Here a = 4 and b = y

4² - y² = (4 + y) (4 - y)

Problem 6 :

m² - 36

Solution:

= m2 - 36

= m2 - 62

Here a = m, b = 6

m² - 6² = (m + 6) (m - 6)

Problem 7 :

4m² - 49

Solution :

(4m² - 49) can be written as (2m)² - 7²

Here a = 2m and b = 7

(2m)² - 7² = (2m + 7) (2m - 7)

Problem 8 :

9m² - 16

Solution:

(4m² - 49) can be written as (3m)² - 4²

Here a = 3m and b = 4

(3m)² - 4² = (3m + 4) (3m - 4)

Problem 9 :

Find the product using suitable identity :

(a + 3)(a - 3)(a2 + 9)

Solution:

= (a + 3)(a - 3)(a2 + 9)

= (a2 - 32)(a2 + 9)

= (a2 - 9)(a2 + 9)

= (a2)2 - 92

= a4 - 81

Evaluate the following :

Problem 9 :

Find the product using suitable identity :

a) 1002 - 982

b) 732 - 672

c) 1452 - 1402

d) 6512 - 6412

Solution:

a) 1002 - 982

= (100 + 98)(100 - 98)

= 198 (2)

= 396

b) 732 - 672

= (73 + 67)(73 - 67)

= 140 (6)

= 840

c) 1452 - 1402

= (145 + 140)(145 - 140)

= 285 (5)

= 1425

d) 6512 - 6412

= (651 + 641)(651 - 641)

= 1292 (10)

= 12920

Find the missing sides of the following.

Problem 10 :

formula-for-asquare-bsquare-q1

Solution :

Using Pythagorean theorem,

AC2 = AB2 + BC2

152 = 132 + x2

x2 = 152 - 132

x2 = (15 + 13) (15 - 13)

x2 = 28 (2)

x = √28 x 2

= √2 x 2 x 7 x 2

= 2 √(2 x 7)

= 2 √14

Problem 11 :

formula-fora-minus-b-whole-square-q2.png

Solution :

Using Pythagorean theorem,

322 = 222 + x2

x2 = 322 - 222

x2 = (32 + 22) (32 - 22)

x2 = 54 (10)

x = √54 x 10

= √3 x 3 x 3 x 2 x 2 x 5

= 3 x 2 √(3 x 5)

= 6 √15

Problem 12 :

formula-fora-minus-b-whole-square-q3.png

Solution :

Using Pythagorean theorem,

472 = x2 + 422

x2 = 472 - 422

x2 = (47 + 42) (47 - 42)

x2 = 89 (5)

x = √(89 x 5)

√445

Problem 13 :

formula-fora-minus-b-whole-square-q4.png

Solution :

Using Pythagorean theorem,

832 = x2 + 772

x2 = 832 - 772

x2 = (83 + 77) (83 - 77)

x2 = 160 (6)

x = √(160 x 6)

√4 x 4 x 2 x 5 x 2 x 3

= (4 x 2) √(5 x 3)

= 8 √15

Problem 14 :

Simplify (y + 7)(y − 7) − (y + 7)

Solution :

= (y + 7)(y − 7) − (y + 7)

= y2 - 72 - (y + 7)

= y2 - 49 - y - 7

= y2 - y - 49 - 7

= y2 - y - 56

Problem 15 :

Simplify (x + y)2 − (x − y)(x + y)

Solution :

(x + y)2 − (x − y)(x + y)

= x2 + 2xy + y2 - (x2 - y2)

= x2 + 2xy + y2 - x2 + y2

= 2xy + 2y2

= 2y(x + y)

Problem 16 :

(2x + 3y)2 − (2x − 3y)(2x + 3y)

Solution :

(2x + 3y)2 − (2x − 3y)(2x + 3y)

= (2x)2 + 2(2x)(3y) + (3y)2 - [(2x)2 - (3y)2]

= 4x2 + 12xy + 9y2 - [4x2 - 9y2]

= 4x2 + 12xy + 9y2 - 4x2 + 9y2

= 12xy + 18y2

Problem 17 :

(a − 1)(a + 1) + (a + 1)2 + (a − 1)2

Solution :

= (a − 1)(a + 1) + (a + 1)2 + (a − 1)2

= a2 - 12 + a2 + 2a + 12 + a2 - 2a + 12

= 3a2 - 1 + 2a + 1 - 2a + 1

= 3a2 + 1

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More