(a+b)3 = a3 + 3a2b+3ab2+b3
Use the binomial expansion for (a + b)³ to expand and simplify:
Problem 1 :
(x + 1)³
Solution :
By comparing (a + b)³ and (x + 1)³, we get
a = x, b = 1
(a + b)³ = a³ + 3a²b + 3ab² + b³
Substitute x for a and 1 for b
(x + 1)³ = x³ + 3(x²) (1) + 3(x) (1²) + 1³
(x + 1)³ = x³ + 3x² + 3x +1
Problem 2 :
(x + 3)³
Solution :
By comparing (a + b)³ and (x + 3)³, we get
a = x, b = 3
(a + b)³ = a³ + 3a²b + 3ab² + b³
Substitute x for a and 3 for b
(x + 3)³ = x³ + 3(x²) (3) + 3(x) (3²) + 3³
(x + 3)³ = x³ + 9x² + 27x + 27
Problem 3 :
(x + 4)³
Solution :
By comparing (a + b)³ and (x + 4)³, we get
a = x, b = 4
(a + b)³ = a³ + 3a²b + 3ab² + b³
Substitute x for a and 4 for b
(x + 4)³ = x³ + 3(x²) (4) + 3(x) (4²) + 4³
(x + 4)³ = x³ + 12x² + 48x + 64
Problem 4 :
(2 + y)³
Solution :
By comparing (a + b)³ and (2 + y)³, we get
a = 2, b = y
(a + b)³ = a³ + 3a²b + 3ab² + b³
Substitute 2 for a and y for b
(2 + y)³ = 2³ + 3(2²) (y) + 3(2) (y²) + y³
(2 + y)³ = 8 + 12y + 6y² + y³
Problem 5 :
(2x + 1)³
Solution :
By comparing (a + b)³ and (2x + 1)³, we get
a = 2x, b = 1
(a + b)³ = a³ + 3a²b + 3ab² + b³
Substitute 2x for a and 1 for b
(2x + 1)³ = (2x)³ + 3(2x)² (1) + 3(2x) (1²) + 1³
(2x + 1)³ = 8x³ + 12x² + 6x + 1
Problem 6 :
(2y + 3x)³
Solution :
(2y + 3x)³ is changed to (3x + 2y)³
By comparing (a + b)³ and (3x + 2y)³, we get
a = 3x, b = 2y
(a + b)³ = a³ + 3a²b + 3ab² + b³
Substitute 3x for a and 2y for b
(3x + 2y)³ = (3x)³ + 3(3x)² (2y) + 3(3x) (2y)² + (2y)³
(3x + 2y)³ = 27x³ + 54x²y + 36xy² + 8y³
Problem 7 :
Find the polynomial that represent the volume of a cube if each side measures x + 4?
Solution :
Volume of a cube V = s³
Here, s is the side length of the cube
V = (x + 4)³
a = x, b = 4
(a + b)³ = a³ + 3a²b + 3ab² + b³
Substitute x for a and 4 for b
(x + 4)³ = x³ + 3(x²) (4) + 3(x) (4)² + (4)³
(x + 4)³ = x³ + 12x² + 48x + 64
Problem 8 :
If 3x + 4y = 11 and xy = 2, find the value of 27x3 + 64y3
Solution :
3x + 4y = 11 and xy = 2
(a + b)³ = a³ + 3a²b + 3ab² + b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(3x + 4y)³ = (3x)³ + (4y)³ + 3(3x)(4y)(3x + 4y)
(3x + 4y)³ = (3x)³ + (4y)³ + 36xy(3x + 4y)
Applying the givne values, we get
11³ = 27x³ + 64y³ + 36(2)(11)
1331 = 27x³ + 64y³ + 792
27x³ + 64y³ = 1331 - 792
27x³ + 64y³ = 539
Problem 9 :
If x2 + 1/x2 = 83, find the value of x3 - 1/x3
Solution :
x2 + 1/x2 = 83
a2 + b2 = (a - b)2 + 2ab
Here a = x and b = 1/x
x2 + 1/x2 = (x - 1/x)2 + 2x(1/x)
83 = (x - 1/x)2 + 2
(x - 1/x)2 = 83 - 2
(x - 1/x)2 = 81
(x - 1/x) = √81
(x - 1/x) = 9
(a - b)³ = a³ - 3a²b + 3ab² - b³
(a - b)³ = a³ - b³ - 3ab(a - b)
(x - 1/x)³ = x³ - 1/x³ - 3x(1/x)(x - 1/x)
(x - 1/x)³ = x³ - 1/x³ - 3 (x - 1/x)
Applying the value of (x + 1/x) = √85, we get
93 = x³ - 1/x³ - 3 (9)
729 = x³ - 1/x³ - 27
x³ - 1/x³ = 729 + 27
x³ - 1/x³ = 756
Problem 10 :
The vaue of (x - y)3 + (y - z)3 + (z - x)3 / 9(x - y)(y - z)(z - x) is equal to
a) 0 b) 1/9 c) 1/3 d) 1
Solution :
(x - y)3 + (y - z)3 + (z - x)3 / 9(x - y)(y - z)(z - x)
(a + b + c)³ = a³ + b³ + c³ + 3 (a +b) (b + c) (a+ c)
When a + b + c = 0
a³ + b³ + c³ = - 3 (a +b) (b + c) (a+ c)
Here a = x - y, b = y - z and c = z - x
a + b + c = x - y + y - z + z - x
= 0
(x - y)3 + (y - z)3 + (z - x)3 = - 3 (x - y + y - z) (y - z + z - x) (z - x + x - y)
= - 3 (x - z) (y - x) (z - y)
Applying the value, we get
= - 3 (x - z) (y - x) (z - y) / 9(x - y)(y - z)(z - x)
= 3 (x - y)(y - z)(z - x) / 9(x - y)(y - z)(z - x)
= 3/9
= 1/3
So, option c is correct.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM