(a - b)3 = a3 - 3a2b + 3ab2 - b3
Expand and simplify :
Problem 1 :
(x - 1)³
Solution :
(x - 1)³ is in the form of (a - b)³
Comparing (a - b)³ and (x - 1)³ , we get
a = x, b = 1
Substitute x for a and 1 for b
(x - 1)³ = x³ - 3(x²)(1) + 3(x)(1²) - 1³
(x - 1)³ = x³ - 3x² + 3x - 1
Problem 2 :
(x - 5)³
Solution :
(x - 5)³ is in the form of (a - b)³
Comparing (a - b)³ and (x - 5)³ , we get
a = x, b = 5
(x - 5)³ = x³ - 3(x²)(5) + 3(x)(5²) – (5)³
(x - 5)³ = x³ - 15x² + 75x - 125
Problem 3 :
(x - 4)³
Solution :
Here a = x and b = 4
(x - 4)³ = x³ - 3(x²)(4) + 3(x)(4²) – (4)³
(x - 4)³ = x³ - 12x² + 48x - 64
Problem 4 :
(x - y)³
Solution :
Here a = x and b = y
(x - y)³ = x³ - 3(x²)(y) + 3(x)(y²) – (y)³
(x - y)³ = x³ - 3x²y + 3xy² - y³
Problem 5 :
(2 - y)³
Solution :
Here a = 2 and b = y
(2 - y)³ = (2)³ - 3(2²)(y) + 3(2)(y²) – (y)³
(2 - y)³ = 8 - 12y + 6y² - y³
Problem 6 :
(2x
- 1)³
Solution :
Here a = 2x and b = 1
(2x - 1)³ = (2x)³ - 3(2x)²(1) + 3(2x)(1²) - 1³
(2x - 1)³ = 8x³ - 12x² + 6x - 1
Problem 7 :
(3x - 1)³
Solution :
Here a = 3x and b = 1
(3x - 1)³ = (3x)³ - 3(3x)²(1) + 3(3x)(1²) - 1³
(3x - 1)³ = 27x³ - 27x² + 9x - 1
Problem 8 :
(2y – 3x)³
Solution :
Here a = 3x and b = 2y
(3x - 2y)³ = (3x)³ - 3(3x)²(2y) + 3(3x)(2y)² – (2y)³
(3x - 2y)³ = 27x³ - 54x²y + 36xy² - 8y³
Problem 9 :
Factorise x3 − x2 − 𝑥 + 1
Solution :
x3 − x2 − 𝑥 + 1
= x2(x - 1) - 1(x - 1)
= (x2 - 1)(x - 1)
= (x2 - 12)(x - 1)
= (x + 1) (x - 1) (x - 1)
= (x + 1) (x - 1)2
Problem 10 :
Find the value of 27x3 + 64y3 + 36xy(3x + 4y), when x = 5 and y = -3
Solution :
= 27x3 + 64y3 + 36xy(3x + 4y)
= 33x3 + 43y3 + 36xy(3x + 4y)
= (3x)3 + (4y)3 + 36xy(3x + 4y)
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a + b)3 = a3 + b3 + 3ab(a + b)
Here a = 3x and b = 4y
= (3x + 4y)3
Applying the given values of x and y, we get
= (3(5) + 4(-3))3
= (15 - 12)3
= 33
= 27
So, the answer is 27.
Problem 11 :
Find the product of (9m + 2n) (81m2 - 18mn + 4n2)
Solution :
= (9m + 2n) (81m2 - 18mn + 4n2)
a3 + b3 = (a + b)(a2 - ab + b2)
Here a = 9m and b = 2n
= (9m + 2n) (92 m2 - (9m)(2n) + 22 n2)
= (9m + 2n) [(9 m)2 - (9m)(2n) + (2 n)2]
= (9 m)3 + (2 n)3
= 729 m3 + 8 n3
Problem 12 :
Find the product of (3 + 5/x) (9 - 15/x + 25/x2)
Solution :
= (3 + 5/x) (9 - 15/x + 25/x2)
a3 + b3 = (a + b)(a2 - ab + b2)
Here a = 3 and b = 5/x
= (3 + 5/x) (32 - 3(5/x) + (5/x)2)
= 33 + (5/x)3
= 27 + 125/x3
Problem 13 :
Find the product of (5 - 2x) (25 + 10x + 4x2)
Solution :
= (5 - 2x) (25 + 10x + 4x2)
a3 - b3 = (a - b)(a2 + ab + b2)
Here a = 5 and b = 2x
= (5 - 2x) (52 + 5(2x) + (2x)2)
= 53 - (2x)3
= 125 - 8x3
Problem 14 :
Factroise (8/27)a3 + (4/9)a2 - 2a/3 - 1
Solution :
= (8/27)a3 + (4/9)a2 - 2a/3 - 1
= (23/33)a3 + ((22/32)a2 - 2a/3 - 1
= ((2/3)a)3 + ((2/3)a)2 - 2a/3 - 1
= [(2/3)a]2 [(2/3)a + 1] - 1 [(2/3)a + 1]
= ([(2/3)a]2 - 1) ((2/3)a + 1)
(2a/3 + 1)(2a/3 - 1) (2a/3 + 1)
= (2a/3 + 1)2 (2a/3 - 1)
Problem 15 :
The value of
(0.1 x 0.1 x 0.1 + 0.02 x 0.02 x 0.02)/(0.2 x 0.2 x 0.2 + 0.04 x 0.04 x 0.04) is
a) 0.0125 b) 0.125 c) 0.25 d) 0.5
Solution :
= (0.1 x 0.1 x 0.1 + 0.02 x 0.02 x 0.02)/(0.2 x 0.2 x 0.2 + 0.04 x 0.04 x 0.04)
= (0.13 + 0.023)/(0.23 + 0.043)
= (0.13 + 0.023)/(0.23 (0.13 + 0.023))
= 1/0.23
= 1/(2/10)3
= (10/2)3
= 1000/8
= 125
Problem 16 :
The value of
[(3/5)3 - (2/5)3] / [(3/5)2 - (2/5)2]
Solution :
= [(3/5)3 - (2/5)3] / [(3/5)2 - (2/5)2]
a3 - b3 = (a - b)(a2 + ab + b2)
a2 - b2 = (a - b)(a + b)
= a3 - b3 / a2 - b2
= (a - b) (a2 + ab + b2) / (a + b)(a - b)
= (a2 + ab + b2) / (a + b)
= ((3/5)2 + (3/5)(2/5) + (2/5)2) / (3/5 + 2/5)
= ((9/25) + (6/25) + (4/25)) / ((3+2)/5)
= ((9 + 6 + 4)/25) / (5/5)
= 19/25
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM