(a3 + b3) = (a + b) (a2 - ab + b2)
From (a + b)3 = a3 + 3a2b + 3ab2 + b3
(a + b)3 = a3 + 3ab(a + b) + b3
Subtracting 3ab(a + b) on both sides, we get
(a + b)3 - 3ab(a + b) = a3 + b3
a3 + b3 = (a + b)3 - 3ab(a + b)
Problem 1:
If a + b = 3 and ab = 2, find the value of
(a) a² - ab + b² and (b) a³ + b³
Solution :
a + b = 3 and ab = 2
a³ + b³ = (a + b) (a² - ab + b²)
By applying the given values, we get
a³ + b³ = 3 (a² - 2 + b²)
Here, a² + b² = (a + b)² - 2ab
a² + b² = 3² - 2(2)
= 9 – 4
a² + b² = 5
Applying a² + b² = 5
(a) a² - ab + b²
a² + b² - ab = 5 – 2
a² + b² - ab = 3
(b) a³ + b³
a³ + b³ = 3(5 - 2)
= 3(3)
a³ + b³ = 9
Problem 2 :
If a - b = 5 and ab = 36, find the value of
(a) a² + ab + b² and (b) a³ - b³
Solution :
a - b = 5 and ab = 36
a³ - b³ = (a - b) (a² + ab + b²)
a³ - b³ = 5 (a² + 36 + b²)
Here, a² + b² = (a - b)² + 2ab
a² + b² = 5² + 2(36)
= 25 + 72
a² + b² = 97
Applying a² + b² = 97
(a) a² + ab + b²
a² + b² + ab = 97 + 36
a² + b² + ab = 133
(b) a³ - b³
a³ - b³ = 5(97 + 36)
a³ - b³ = 5(133)
a³ - b³ = 665
Problem 3 :
If m + 1/m = a, find the value of m³ + 1/m³.
Solution :
Given m + 1/m = a
(m + 1/m)³ = a³
Use the formula (a + b)³ = a³ + b³ + 3ab(a + b)
m³ + 1/m³ + 3(m)(1/m) (m + 1/m) = a³
m³ + 1/m³ + 3m + 3/m = a³
m³ + 1/m³ = a³ - 3(m + 1/m)
= a³ - 3(a)
m³ + 1/m³ = a³ - 3a
Problem 4 :
If x - 1/x = p, find the value of x³ - 1/x³.
Solution :
Given x - 1/x = p
(x - 1/x)³ = p³
Use the formula (a - b)³ = a³ - b³ - 3ab(a - b)
x³ - 1/x³ - 3(x)(1/x) (x - 1/x) = p³
x³ - 1/x³ - 3x + 3/x = p³
x³ - 1/x³ = p³ + 3(x - 1/x)
= p³ + 3(p)
x³ - 1/x³ = p³ + 3p
Problem 5 :
If a - 1/a = 1, show that, a³ - 1/a³ = 4.
Solution :
Given a - 1/a = 1
(a - 1/a)² = 1²
Use the formula (a - b)² = a² - 2ab + b²
a² - 2(a)(1/a) + (1/a)² = 1
a² - 2 + 1/a² = 1
a² + 1/a² = 3
So, a³ - 1/a³ = a³ - (1/a)³
Use the formula (a³ - b³) = (a - b) (a² + ab + b²)
= (a - 1/a) [a² + a∙1/a + (1/a)²]
= (a - 1/a) (a² + 1 + 1/a²)
= (1) (3 + 1)
= 1 × 4
= 4
So, a³ - 1/a³ = 4.
Problem 6 :
If 2x - 2/x = 3, show that, 8(x³ - 1/x³) = 63.
Solution :
Given 2x - 2/x = 3
2(x – 1/x) = 3
x - 1/x = 3/2
(x - 1/x)³ = (3/2)³
(x - 1/x)³ = 27/8
(x - 1/x)² (x - 1/x) = 27/8
Use the formula (a - b)² = a² - 2ab + b²
(x² - 2 + 1/x²) (x - 1/x) = 27/8
x²(x) - x²(1/x) – 2(x) + 2(1/x) + 1/x²(x) – 1/x²(1/x) = 27/8
x³ - x - 2x + 2/x + 1/x – 1/x³ = 27/8
(x³ - 1/x³) – (x – 1/x) – (2x – 2/x) = 27/8
x³ - 1/x³ = 27/8 + 3 + 3/2
x³ - 1/x³ = (27 + 24 + 12) / 8
x³ - 1/x³ = 63/8
So, 8(x³ - 1/x³) = 8(63/8) = 63.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM