FINDING VERTICES FOCI AND ASYMPTOTES OF HYPERBOLA WORKSHEET

Use the vertices and asymptotes to graph each hyperbola. Locate the foci and find the equation of asymptotes.

Problem 1 :

Solution

Problem 2 :

Solution

Problem 3 :

Solution

Problem 4 :

4y2 - x2 = 1

Solution

Problem 5 :

(x - 3)2 - 4(y + 3)2 = 4

Solution

Problem 6 :

Solution

Answer Key

1)  

Center : C (0, 0)

Vertices :  A(3, 0) and A'(-3, 0) and c = 5

Foci : F(5, 0) and F(-5, 0)

Equation of asymptotes :  y = (-4/3) and y = (4/3) x

2)

Center : C (0, 0)

Vertices :  A(10, 0) and A'(-10, 0) and c = 2√41

Foci : F(2√41, 0) and F(-2√41, 0)

Equation of asymptotes : y = (-4/5) and y = (4/5) x

3)

Center : C (0, 0)

Vertices : A(0, 4) and A'(0, -4) and c = 2√13

Foci : F(0, 2√13) and F(0, 2√13)

Equation of asymptotes : y = (-2/3)x  and y = (2/3) x

4)

Center : C (0, 0)

Vertices :  A (0, 1/2) and A'(0, -1/2) and c = √5/2

Foci : F(0, √5/2) and F(0, -√5/2)

Equation of asymptotes : y = (-1/2)x and y = (1/2) x

5)

Center : C (h, k) ==> (3, -3)

Vertices :  A(5, -3),  A'(1, -3) and c = √5

Foci : F(3 + √5 , -3) and F(3 - √5 , -3)

Equation of asymptotes :

y = (1/2)x - (9/2) and y = (-1/2)x + (-3/2)

6)

Center : C (h, k) ==> (1, -2)

Vertices : A(1, 0), A'(1, -4) and c = 2√5

Foci :F(1, -2 + 2√5 ) and F(1, -2 - 2√5)

Equation of asymptotes :

y = (1/2)x - (5/2) and y = (-1/2)x - (3/2)

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More