Find a that would make the function continuous.
Problem 1 :
Solution :
Lim x->2- f(x) = Lim x->2- x3
Applying the limit, we get
Lim x->2- f(x) = (2)3
= 8 ----(1)
Lim x->2+ f(x) = Lim x->2+ ax2
Applying the limit, we get
Lim x->2+ f(x) = a(2)2
= 4a----(2)
(1) = (2)
8 = 4a
a = 8/4
a = 2
Problem 2 :
Solution :
lim x->-1- f(x) = Lim x->-1- 2
Applying the limit, we get
Lim x->-1- f(x) = 2
Lim x->-1+ f(x) = Lim x->-1+ ax + b
Applying the limit, we get
Lim x->-1+ f(x) = a(-1) + b
= -a + b
Equating left hand limit and right hand limit, we get
-a + b = 2 ----(1)
lim x->3- f(x) = Lim x->3- ax + b
Applying the limit, we get
Lim x->3- f(x) = a(3) + b
= 3a + b
Lim x->3+ f(x) = Lim x->3+ -2
Applying the limit, we get
Lim x->3+ f(x) = -2
Equating the left hand limit and right hand limit, we get
3a + b = -2 ----(2)
(1) - (2)
-a + b - (3a + b) = 2 + 2
-a + b - 3a - b = 4
-4a = 4
a = -4/4
a = -1
Applying the value of a in (1), we get
1 + b = 2
b = 2 - 1
b = 1
Problem 3 :
For which value of c is m(x) a continuous function ?
Solution :
Lim x->2+ f(x) = Lim x->2+ cx2 + 1
Applying the limit, we get
Lim x->2+ f(x) = c(2)2 + 1
= 4c + 1 ----(1)
Lim x->2- f(x) = Lim x->2- 10 - x
Applying the limit, we get
Lim x->2- f(x) = 10 - 2
= 8 ----(2)
Since, m(x) is a continuous function.
Lim x->2+ f(x) = Lim x->2- f(x) = Lim x->2 f(x)
(1) = (2)
4c + 1 = 8
4c = 8 - 1
4c = 7
c = 7/4
For each of the following functions, find the values of the unknown variables that make each function continuous everywhere.
Problem 4 :
Solution :
Lim x->2- f(x) = Lim x->2- ax2 + 2x
Applying the limit, we get
Lim x->2- f(x) = a(2)2 + 2(2)
= 4a + 4 ----(1)
Lim x->2+ f(x) = Lim x->2+ x3 - ax
Applying the limit, we get
Lim x->2+ f(x) = (2)3 - 2a
= 8 - 2a ---- (2)
(1) = (2)
4a + 4 = 8 - 2a
4a + 2a = 8 - 4
6a = 4
a = 4/6
a = 2/3
Problem 5 :
Solution :
Lim x->0- f(x) = Lim x->0- x2 + a cos x + 4
Applying the limit, we get
Lim x->0- f(x) = a cos 0 + 4
= a + 4 ----(1)
Lim x->0+ f(x) = Lim x->0+ x + 3
Applying the limit, we get
Lim x->0+ f(x) = 0 + 3
= 3---- (2)
(1) = (2)
a + 4 = 3
a = 3 - 4
a = 1
Problem 6 :
Solution :
lim x->2- g(x) = Lim x->2- (x2 - 4)/(x - 2)
lim x->2- g(x) = Lim x->2- (x2 - 22)/(x - 2)
lim x->2- g(x) = Lim x->2- (x - 2)(x + 2)/(x - 2)
lim x->2- g(x) = Lim x->2- (x + 2)
Applying the limit, we get
Lim x->-2- g(x) = 2 + 2
Lim x->-2- g(x) = 4
Lim x->2+ g(x) = Lim x->2+ ax2 - bx + 3
Applying the limit, we get
Lim x->2+ g(x) =a(2)2 - b(2) + 3
= 4a - 2b + 3
Equating left hand limit and right hand limit, we get
4a - 2b + 3 = 4
4a - 2b = 4 - 3
4a - 2b = 1--- (1)
lim x->3- g(x) = Lim x->3- ax2 - bx + 3
Applying the limit, we get
Lim x->3- g(x) = a(32) - 3b + 3
= 9a - 3b + 3
Lim x->3+ g(x) = Lim x->3+ 2x - a + b
Applying the limit, we get
Lim x->3+ g(x) = 2(3) - a + b
= 6 - a + b
Equating the left hand limit and right hand limit, we get
9a - 3b + 3 = 6 - a + b
9a - 3b - (-a + b) = 6 - 3
9a - 3b + a - b = 3
10a - 4b = 3 --- (2)
4a - 2b = 1 ----(1)
10a - 4b - 2(4a - 2b) = 3 - 2
10a - 4b - 8a + 4b = 1
2a = 1
a = 1/2
Applying the value of a in (1), we get
4(1/2) - 2b = 1
2 - 2b = 1
1 = 2b
b = 1/2
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM