Coterminal Angles are angles who share the same initial side and terminal sides.
Finding coterminal angles is as simple as adding or subtracting 360º or 2π to each angle, depending on whether the given angle is in degrees or radians.
How many coterminal angles are possible ?
There are an infinite number of coterminal angles that can be found. Following this procedure, all coterminal angles can be found.
If more than one positive coterminal angle needs to be found, simply add another 360º. This would essentially make the new angle complete two full revolutions before its terminal side comes to rest.
Find one negative angle that is coterminal to 30º.
A negative angle moves in a clockwise direction. In this case, to find the negative coterminal angle, subtract 360º from 30º.
30º - 360º = -330º
Find one negative angle that is coterminal to 150º.
150º - 360º = -210º
Find one negative angle that is coterminal to 415º.
415º - 360º = 55º
Although 55º is a coterminal angle to 415º, this is not a solution to the problem. The problem specifically asked for a negative angle, so the process needs to take place one more time.
55º - 360º = -305º
Find two coterminal angles for each given angle.
Problem 1 :
-5º
Solution :
The given angle is, θ = -5º
The formula to find the coterminal angles is, θ ± 360n
Let us find two coterminal angles :
Let n = 1
Positive angles : θ + 360n -5 + 360(1) - 5 + 360 355º |
Negative angles : θ - 360n -5 - 360(1) -5 - 360 -365º |
So, the angle is 355º and -365º.
Problem 2 :
5º
Solution :
The given angle is, θ = 5º
The formula to find the coterminal angles is, θ ± 360n
Let us find two coterminal angles :
n = 1
Positive angles : θ + 360n 5 + 360(1) 5 + 360 365º |
Negative angles : θ - 360n 5 - 360(1) 5 - 360 -355º |
So, the angle is 365º and -355º.
Problem 3 :
45º
Solution :
The given angle is, θ = 45º
The formula to find the coterminal angles is, θ ± 360n
Let us find two coterminal angles :
n = 1
Positive angles : θ + 360n 45 + 360(1) 45 + 360 405º |
Negative angles : θ - 360n 45 - 360(1) 45 - 360 -315º |
So, the angle is 405º and -315º.
Problem 4 :
-45º
Solution :
The given angle is, θ = -45º
The formula to find the coterminal angles is, θ ± 360n
Let us find two coterminal angles :
n = 1
Positive angles : θ + 360n -45 + 360(1) -45 + 360 315º |
Negative angles : θ - 360n -45 - 360(1) -45 - 360 -405º |
So, the angle is 315º and -405º.
Problem 5 :
5π/2
Solution :
The given angle is, θ = 5π/2
5π/2 is reference angle.
So, 5π/2 = π/2
The formula to find the coterminal angles is, θ ± 2πn
Let us find two coterminal angles :
n = 1
Positive angles : θ + 2πn π/2 + 2π(1) π/2 + 2π 5π/2 π/2 |
Negative angles : θ - 2πn π/2 - 2π(1) π/2 - 2π -3π/2 |
So, the angle is π/2 and -3π/2.
Problem 6 :
-π
Solution :
The given angle is, θ = -π
The formula to find the coterminal angles is, θ ± 2πn
Let us find two coterminal angles :
n = 1
Positive angles : θ + 2πn -π + 2π(1) -π + 2π π |
Negative angles : θ - 2πn -π - 2π(1) -π - 2π -3π |
So, the angle is π and -3π.
Problem 7 :
17π/9
Solution :
The given angle is, θ = 17π/9
The formula to find the coterminal angles is, θ ± 2πn
Let us find two coterminal angles :
n = 1
Positive angles : θ + 2πn 17π/9 + 2π(1) (17π + 18π)/9 35π/9 |
Negative angles : θ - 2πn 17π/9 - 2π(1) (17π - 18π)/9 -π/9 |
So, the angle is 35π/9 and -π/9.
Problem 8 :
13π/18
Solution :
The given angle is, θ = 13π/18
The formula to find the coterminal angles is, θ ± 2πn
Let us find two coterminal angles :
n = 1
Positive angles : θ + 2πn 13π/18 + 2π(1) (13π + 36π)/18 49π/18 |
Negative angles : θ - 2πn 13π/18 - 2π(1) (13π - 36π)/18 -23π/18 |
So, the angle is 49π/18 and -23π/18.
Problem 9 :
5π/4
Solution :
The given angle is, θ = 5π/4
The formula to find the coterminal angles is, θ ± 2πn
Let us find two coterminal angles :
n = 1
Positive angles : θ + 2πn 5π/4 + 2π(1) 5π/4 + 2π 13π/4 |
Negative angles : θ - 2πn 5π/4 - 2π(1) 5π/4 - 2π -3π/4 |
So, the angle is 13π/4 and -3π/4.
Problem 10 :
25π/36
Solution :
The given angle is, θ = 25π/36
The formula to find the coterminal angles is, θ ± 2πn
Let us find two coterminal angles :
n = 1
Positive angles : θ + 2πn 25π/36 + 2π(1) (25π + 72π)/36 97π/36 |
Negative angles : θ - 2πn 25π/36 - 2π(1) (25π - 72π)/36 -47π/36 |
So, the angle is 97π/36 and -47π/36.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM