FINDING TWO COTERMINAL ANGLES FOR THE GIVEN ANGLE

Coterminal Angles are angles who share the same initial side and terminal sides.

Finding coterminal angles is as simple as adding or subtracting 360º or 2π to each angle, depending on whether the given angle is in degrees or radians.

How many coterminal angles are possible ?

There are an infinite number of coterminal angles that can be found. Following this procedure, all coterminal angles can be found.

If more than one positive coterminal angle needs to be found, simply add another 360º. This would essentially make the new angle complete two full revolutions before its terminal side comes to rest.

Find one negative angle that is coterminal to 30º.

A negative angle moves in a clockwise direction. In this case, to find the negative coterminal angle, subtract 360º from 30º.

30º - 360º = -330º

Find one negative angle that is coterminal to 150º.

150º - 360º = -210º

Find one negative angle that is coterminal to 415º.

415º - 360º = 55º

Although 55º is a coterminal angle to 415º, this is not a solution to the problem. The problem specifically asked for a negative angle, so the process needs to take place one more time.

55º - 360º = -305º

Find two coterminal angles for each given angle.

Problem 1 :

-5º

Solution :

The given angle is, θ = -5º

The formula to find the coterminal angles is, θ ± 360n

Let us find two coterminal angles :

Let n = 1

Positive angles :

 θ + 360n

-5 + 360(1)

- 5 + 360

 355º

Negative angles :

 θ - 360n

-5 - 360(1)

 -5 - 360

 -365º

So, the angle is 355º and -365º.

Problem 2 :

5º

Solution :

The given angle is, θ = 5º

The formula to find the coterminal angles is, θ ± 360n

Let us find two coterminal angles :

n = 1

Positive angles :

 θ + 360n

5 + 360(1)

5 + 360

 365º

Negative angles :

 θ - 360n

5 - 360(1)

 5 - 360

 -355º

So, the angle is 365º and -355º.

Problem 3 :

45º

Solution :

The given angle is, θ = 45º

The formula to find the coterminal angles is, θ ± 360n

Let us find two coterminal angles :

n = 1

Positive angles :

 θ + 360n

45 + 360(1)

45 + 360

405º

Negative angles :

θ - 360n

45 - 360(1)

45 - 360

-315º

So, the angle is 405º and -315º.

Problem 4 :

-45º

Solution :

The given angle is, θ = -45º

The formula to find the coterminal angles is, θ ± 360n

Let us find two coterminal angles :

n = 1

Positive angles :

 θ + 360n

-45 + 360(1)

-45 + 360

315º

Negative angles :

 θ - 360n

-45 - 360(1)

-45 - 360

-405º

So, the angle is 315º and -405º.

Problem 5 :

5π/2

Solution :

The given angle is, θ = 5π/2

5π/2 is reference angle.

So, 5π/2 = π/2

The formula to find the coterminal angles is, θ ± 2πn

Let us find two coterminal angles :

n = 1

Positive angles :

  θ + 2πn

π/2 + 2π(1)

π/2 + 2π

5π/2

π/2

Negative angles :

θ - 2πn

π/2 - 2π(1)

π/2 - 2π

-3π/2

So, the angle is π/2 and -3π/2.

Problem 6 :

Solution :

The given angle is, θ = -π

The formula to find the coterminal angles is, θ ± 2πn

Let us find two coterminal angles :

n = 1

Positive angles :

  θ + 2πn

   -π + 2π(1)

-π + 2π

π

Negative angles :

  θ - 2πn

   -π - 2π(1)

-π - 2π

-3π

So, the angle is π and -3π.

Problem 7 :

17π/9

Solution :

The given angle is, θ = 17π/9

The formula to find the coterminal angles is, θ ± 2πn

Let us find two coterminal angles :

n = 1

Positive angles :

  θ + 2πn

  17π/9 + 2π(1)

(17π + 18π)/9

35π/9

Negative angles :

  θ - 2πn

 17π/9 - 2π(1)

(17π - 18π)/9

-π/9

So, the angle is 35π/9 and -π/9.

Problem 8 :

13π/18

Solution :

The given angle is, θ = 13π/18

The formula to find the coterminal angles is, θ ± 2πn

Let us find two coterminal angles :

n = 1

Positive angles :

  θ + 2πn

 13π/18 + 2π(1)

(13π + 36π)/18

49π/18

Negative angles :

  θ - 2πn

 13π/18 - 2π(1)

(13π - 36π)/18

-23π/18

So, the angle is 49π/18 and -23π/18.

Problem 9 :

5π/4

Solution :

The given angle is, θ = 5π/4

The formula to find the coterminal angles is, θ ± 2πn

Let us find two coterminal angles :

n = 1

Positive angles :

  θ + 2πn

5π/4 + 2π(1)

5π/4 + 2π

13π/4

Negative angles :

  θ - 2πn

5π/4 - 2π(1)

5π/4 - 2π

-3π/4

So, the angle is 13π/4 and -3π/4.

Problem 10 :

25π/36

Solution :

The given angle is, θ = 25π/36

The formula to find the coterminal angles is, θ ± 2πn

Let us find two coterminal angles :

n = 1

Positive angles :

  θ + 2πn

25π/36 + 2π(1)

(25π + 72π)/36

97π/36

Negative angles :

θ - 2πn

25π/36 - 2π(1)

(25π - 72π)/36

-47π/36

So, the angle is 97π/36 and -47π/36.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More