FINDING THE MISSING ANGLE OF A QUADRILATERAL

In the above figure, ABCD is a quadrilateral.

The sum of interior angles of a quadrilateral is 360°

That is,

+ m B + m C + m D = 360°

Find the measure of the indicated angle in each quadrilateral.

Problem 1 :

Solution :

The sum of interior angles of a quadrilateral is 360°

A + m B + m C + m D = 360°

Here m B = 87°, C = 112°, and, D = 92°

A + 87° + 112° + 92° 360° 

A + 291° 360° 

A = 360° - 291°

A = 69°

Problem 2 :

Solution :

The sum of interior angles of a quadrilateral is 360°

P + Q + m R + m S = 360°

Here m P = 124°, R = 68°, and, S = 71°

124° + Q + 68° + 71° = 360°

Q + 263° 360°

Q = 360° - 263°

Q = 97°

Problem 3 :

Solution :

The sum of interior angles of a quadrilateral is 360°

W + m X + Y + m Z = 360°

Here m W = 95°, X = 74°, and, Z = 46°

95° + 74° + Y + 46° 360°

Y + 215° 360°

Y = 360° - 215°

Y = 145°

Problem 4 :

Solution :

The sum of interior angles of a quadrilateral is 360°

J + K + m L + m M = 360°

Here m J = 72°, L = 49°, and, M = 89°

72° + K + 49° + 89° = 360°

K + 210° 360°

K = 360° - 210°

K = 150°

Problem 5 :

Solution :

Q + R + m S + m T = 360°

Here m Q = 98°, S = 65°, and, T = 69°

98° + R + 65° + 69° 360°

R + 232° 360°

R = 360° - 232°

R = 128°

Problem 6 :

Solution :

B + m C + m D + m E = 360°

Here m B = 77°, D = 86°, and E = 123°

77° + m C + 86° + 123° 360°

C + 286° 360°

C = 360° - 286°

C = 74°

Problem 7 :

Solution :

U + m V + m W + m X = 360°

Here m U = 67°, V = 135°, and W= 105°

67° + 135° + 105° + m 360°

X + 307° 360°

X = 360° - 307°

X = 53°

Problem 8 :

Solution :

S + m T + m U + m V = 360°

Here m S = 114°, U = 92°, and, V= 66°

114° + m T + 92° + 66° 360°

T + 272° 360°

T = 360° - 272°

T = 88°

Problem 9 :

Solution :

E + m F + m G + m H = 360°

Here m E = 146°, G = 91°, and, m H= 75°

146° + m F + 91° + 75° 360°

F + 312° 360°

F = 360° - 312°

F = 48°

Problem 10 :

If three angles of a quadrilateral are each equal to 75°, the fourth angle is :-

(a) 150°        (b) 135°       (c) 45°         (d) 75°

Solution :

In a quadrilateral, the sum of angles of quadrilateral = 360

Three angles of a quadrilateral = 75 degree. Let x be the fourth angle.

75 + 75 + 75 + x = 360

225 + x = 360

x = 360 - 225

x = 135

So, option b is correct.

Problem 11 :

What is the maximum number of obtuse angles that a quadrilateral can have ?

(a) 1      (b) 2     (c) 3      (d) 4

Solution :

A quadrilateral can have a maximum of three obtuse angles. Since the sum of interior angles in any quadrilateral is 360 degrees, having four obtuse angles (each greater than 90 degrees) would result in a sum greater than 360, according to math sites

Problem 12  :

ABCD is a rhombus such that ∠ACB = 40°. Then ∠ADB is

(a) 40°       (b) 45°       (c) 50°       (d) 60°

Solution :

missing-angle-of-quadrilateral-q1.png

By observing the rhombus,

∠OAD = 40

∠AOD = 90

∠ADO = x

40 + 90 + x = 180

130 + x = 180

x = 180 - 130

x = 50

Problem 13 :

If PQRS is a parallelogram, then ∠P − ∠R is

missing-angle-of-quadrilateral-q2.png

(a) 90°       (b) 45°      (c) 60°      (d) 0°

Solution :

So, ∠P = ∠R

Now, ∠P - ∠R = ∠P - ∠P

= 0

Therefore, the required value is 0.

Problem 14 :

ABCD is a square, diagonal AC is joined. Then the measurement of ∠ACB is

(a) 35°           (b) 40°         (c) 45°          (d) 50°

Solution :

missing-angle-of-quadrilateral-q3.png

∠ACB = ∠BAC = 45 and ∠ABC = 90

∠ABC + ∠ACB + ∠BAC = 180

So, answer is option c.

Problem 15 :

In a parallelogram PQRS, if ∠P = (3x − 5)° and ∠Q = (2x + 15)°, then find the value of x.

Solution :

In a parallelogram PQRS, 

missing-angle-of-quadrilateral-q2.png

sum of co-interior angles = 180 degree

∠P + ∠Q = 180

3x - 5 + 2x + 15 = 180

5x + 10 = 180

5x = 180 - 10

5x = 170

x = 170/5

x = 34

Problem 16 :

In the figure, ABCD is a rhombus. Find x & y

missing-angle-of-quadrilateral-q4.png

Solution :

x = 64° due to angle OAB and x being alternate interior angles.

Diagonals of a rhombus are perpendicular bisectors.

So, angle DAC and DCB would be 64 + 64= 128°.

So,in triangle COB, angle O = 90° and angle OCB = 64°.

90 + 64 + y = 180°(angle sum property)

154° + y = 180°

y = 180 - 154 = 26°

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More