Problem 1 :
Use the limit definition of a derivative to find f'(x) if
f(x) = 2x2 - 3x + 1
Solution :
By applying h = 0, we get
2x - 3
Problem 2 :
Use the derivative using the limit definition to the derivative to find f'(2) if
f(x) = √(2 - x)
Solution :
Problem 3 :
Use the limit definition of a derivative to find f'(x) if
f(x) = √(2x - 1)
Solution :
Problem 4 :
Use the limit definition of a derivative to find f'(3) if
f(x) = 2/(5 - x)
Solution :
At x = 3
Problem 5 :
Use the limit definition of a derivative to find f'(x) if
f(x) = x2 - 4x
Solution :
Problem 6 :
Use the limit definition of a derivative to find f'(x) if
f(x) = x3 + 5x2 - 4
Solution :
f(x) = x3 + 5x2 - 4
f(x+h) = (x + h)3 + 5(x + h)2 - 4
= x3 + 3x2h + 3xh2 + h3 + 5(x2 + 2xh + h2) - 4
f(x+h) = x3 + 3x2h + 3xh2 + h3 + 5x2 + 10xh + 5h2 - 4
f(x) = x3 + 5x2 - 4
f(x+h)-f(x)
= (x3 + 3x2h + 3xh2 + h3 + 5x2 + 10xh + 5h2 - 4) - (x3 + 5x2 - 4)
f(x+h) - f(x) = 3x2h + 3xh2 + h3 + 10xh + 5h2
[f(x+h) - f(x)]/h = h(3x2+ 3xh + h2 + 10x + 5h)/h
lim h-> 0 [f(x+h) - f(x)]/h
= lim h -> 0(3x2+ 3xh + h2 + 10x + 5h)
Applying the value of h,
= 3x2+ 10x
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM