To find the derivative of trig functions, we may use the rules given below
d (sin x) / dx = cos x
d (cos x) / dx = -sin x
d (tan x) / dx = sec2 x
d (sec x) / dx = sec x tan x
d (cot x) / dx = -cosec2 x
d (cosec x) / dx = -cosec x cot x
Problem 1 :
y = cos³x
Solution :
y = cos³x
y = d/dx (cos³x)
= 3cos²(x) · (-sin x)
dy/dx = -3 sin x cos² x
Problem 2 :
y = x³ tan 8x
Solution :
y = x³ tan 8x
Here two differentiable functions are multiplied. So, we have to use product rule to differentiate the function given above.
= d/dx (x³ tan 8x)
u = x³ and v = tan 8x
u' = 3x2 an dv' = 8sec² (8x)
d(uv) = uv' + vu'
= 3x² tan 8x + x³ sec² (8x) (8)
dy/dx = 3x² tan 8x + 8x³ sec² (8x)
Problem 3 :
y = sin² 4x
Solution :
y = sin² 4x
dy/dx = 2sin (4x) · d/dx(sin 4x)
= 2 sin (4x) cos (4x) · d/dx (4x)
= 2 sin (4x) cos (4x) · (4)
dy/dx = 4 sin 2(4x)
dy/dx = 4 sin 8x
Problem 4 :
y = cos (x² + 1)
Solution :
y = cos (x² + 1)
y = d/dx (cos (x² + 1))
dy/dx = - sin(x² + 1) d/dx (x² + 1)
= - (2x + 0) sin (x² + 1)
dy/dx = -2x sin (x² + 1)
Problem 5 :
y = tan πx
Solution :
y = tan πx
y = d/dx (tan πx)
dy/dx = sec² (πx) d/dx (πx)
= sec² (πx) (π)
dy/dx = π sec² (πx)
Problem 6 :
y = cos √x
Solution :
y = cos √x
y = d/dx (cos √x)
dy/dx = (- sin (√x) . d/dx (√x))
= -1/2 x1/2-1 sin (√x)
dy/dx = - sin (√x) / 2√x
Problem 7 :
y = √cos 2x
Solution :
y = √cos 2x
y = d/dx (√cos 2x)
dy/dx = (1/(2√cos 2x)) sin 2x (2)
dy/dx = (2sin 2x/(2√cos 2x))
dy/dx = (sin 2x/(√cos 2x))
Problem 8 :
y = sin4 √x
Solution :
y = sin4 √x
y = d/dx (sin4 √x)
dy/dx = 4 sin3 (√x) cos√x (1/2√x)
dy/dx = (4 sin3 (√x) cos√x) / 2√x
dy/dx = (2 sin3 (√x) cos√x) / √x
dy/dx = (sin2 (√x)) (2 sin (√x) cos√x) / √x
dy/dx = (sin2 (√x)) (sin (2√x)) / √x
Problem 9 :
y = tan³x
Solution :
y = tan³x
y = d/dx (tan³x)
= 3tan²(x) · d/dx (tan x)
dy/dx = 3 tan² x sec² x
Problem 10 :
y = sin²x + cos²x
Solution :
y = sin²x + cos²x
y = dy/dx (sin²x + cos²x)
dy/dx = 2 sin x · d/dx (sin x) + 2 cos x · d/dx (cos x)
= 2 sin x cos x + 2 cos x (-sin x)
dy/dx = 0
Problem 11 :
y = (sin x + cos x)²
Solution :
y = (sin x + cos x)²
y = d/dx (sin x + cos x)²
dy/dx = 2 (sin x + cos x) · d/dx [(sin x) + (cos x)]
= 2 (sin x + cos x) (cos x - sin x)
dy/dx = 2 (cos² x - sin² x)
Using the formula, cos 2x = cos² x - sin² x
dy/dx = 2 (cos 2x)
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM