Subscribe to our ā¶ļø YouTube channelš“ for the latest videos, updates, and tips.
To find the nth root of a complex number, we follow the steps given below.
Step 1 :
Write the given complex number from rectangular form to polar form.
Step 2 :
Add 2kĻ to the argument
Step 3 :
Apply De' Moivre's theorem (bring the power to inside)
Step 4 :
Put k = 0, 1, 2, ............ up to n - 1
Solve each equation in the complex number system. Express solutions in polar and rectangular form.
Problem 1 :
x5 - 32i = 0
Solution:
x5 - 32i = 0
x5 = 32i
z = 0 + 32i
z = r(cos Īø + i sin Īø)
Finding the r :
r = ā(02 + 322)
r = ā1024
r = 32
Finding the α :
α = tan-1(32/0)
α = tan-1(ā)
α = Ļ/2
Īø = Ļ/2
z=32cos š2+ i sin š2z15=32cos 2kš+š2+i sin 2kš+š215Using De Moivre's theorem, bringing the power insidez15=3215cos 4kš+š2+i sin 4kš+š2=2cos š2(4k+1)+i sin š2(4k+1)Put k=0,1,2,3 and 4When k=0=2cos š2(4(0)+1)+i sin š2(4(0)+1)=2cos š2+i sin š2---(1)When k=1=2cos š2(4(1)+1)+i sin š2(4(1)+1)=2cos 5š2+i sin 5š2---(2)When k=2=2cos š2(4(2)+1)+i sin š2(4(2)+1)=2cos 9š2+i sin 9š2---(3)When k=3=2cos š2(4(3)+1)+i sin š2(4(3)+1)=2cos 13š2+i sin 13š2---(4)When k=4=2cos š2(4(4)+1)+i sin š2(4(4)+1)=2cos 17š2+i sin 17š2---(5)
Problem 2 :
x3 - (1 + iā3) = 0
Solution:
x3 - (1 + iā3) = 0
x3 = (1 + iā3)
x=31+i3
z = 1 + iā3
z = r(cos Īø + i sin Īø)
Finding the r :
r = ā((1)2 + ā32)
r = ā(1 + 3)
r = ā4
r = 2
Finding the α :
α = tan-1(ā3/1)
α = tan-1(ā3)
α = Ļ/3
Īø = Ļ/3
z=2cos š3+ i sin š3z13=2cos 2kš+š3+i sin 2kš+š313Using De Moivre's theorem, bringing the power insidez13=213cos 6kš+š3+i sin 6kš+š3=32cos š3(6k+1)+i sin š3(6k+1)Put k=0,1 and 2When k=0=32cos š3(6(0)+1)+i sin š3(6(0)+1)=32cos š3+i sin š3---(1)When k=1=32cos š3(6(1)+1)+i sin š3(6(1)+1)=32cos 7š3+i sin 7š3---(2)When k=2=32cos š3(6(2)+1)+i sin š3(6(2)+1)=32cos 13š3+i sin 13š3---(3)
Problem 3 :
x3 - (1 - iā3) = 0
Solution:
x3 - (1 - iā3) = 0
x3 = (1 - iā3)
x=31-i3
z = 1 - iā3
z = r(cos Īø + i sin Īø)
Finding the r :
r = ā((1)2 + ā32)
r = ā(1 + 3)
r = ā4
r = 2
Finding the α :
α = tan-1(-ā3/1)
α = tan-1(-ā3)
α = -Ļ/3
Īø = -Ļ/3
z=2cos -š3+ i sin-š3z13=2cos 2kš-š3+i sin 2kš-š313Using De Moivre's theorem, bringing the power insidez13=213cos 6kš-š3+i sin 6kš-š3=32cos š3(6k-1)+i sin š3(6k-1)Put k=0,1 and When k=0=32cos š3(6(0)-1)+i sin š3(6(0)-1)=32cos -š3+i sin -š3---(1)When k=1=32cos š3(6(1)-1)+i sin š3(6(1)-1)=32cos 5š3+i sin 5š3---(2)When k=2=32cos š3(6(2)-1)+i sin š3(6(2)-1)=32cos 11š3+i sin 11š3---(3)
Subscribe to our ā¶ļø YouTube channelš“ for the latest videos, updates, and tips.