FINDING Nth TERM OF A GEOMETRIC SEQUENCE

What is geometric progression ?

A Geometric Progression is a sequence in which each term is obtained by multiplying a fixed non-zero number to the preceding term except the first term. The fixed number is called common ratio. The common ratio is usually denoted by r.

General term of Geometric Progression :

To find a formula for nth term or general term of Geometric Progression (G.P.) whose terms are in the common ratio.

tn = arn-1

Write down formulae for the nth term of these sequences :

Problem 1 :

3, 6, 12, 24, …

Solution :

3, 6, 12, 24, …

r = a3/a2

= 12/6

= 2

r = a2/a1

= 6/3

= 2

Since the common ratio is same, the given sequence is geometric sequence.

nth term :

an = a1  rn - 1

an = 3  2n - 1

nth term of the sequence :

an = 3   2n - 1

Problem 2 :

36, 18, 9, 4.5, …

Solution :

36, 18, 9, 4.5, …

r = a3/a2

r = 9/18

r = 1/2

r = a2/a1

r = 18/36

r = 1/2

Since the common ratio is same, the given sequence is geometric sequence.

an = a1   rn - 1

an = 36  1/2n - 1

nth term of the sequence :

an = 36   (1/2)n - 1

Problem 3 :

2, -6, 18, -54, …

Solution :

2, -6, 18, -54, …

r = a3/a2

r = 18/(-6)

r = -3

r = a2/a1

r = -6/2

r = -3

It is geometric progression.

an = a1  rn - 1

an = 2  (-3)n - 1

nth term of the sequence :

an = 2  (-3)n - 1

Problem 4 :

90, -30, 10, -3 1/3, …

Solution :

90, -30, 10, -3 1/3, …

r = a3/a2

r = 10/(-30)

r = -1/3

r = a2/a1

r = (-30)/90

r = -1/3

It is geometric progression.

an = a1  rn - 1

an = 90   (-1/3)n - 1

nth term of the sequence :

an = 90   (-1/3)n - 1

Problem 5 :

10, 100, 1000, …

Solution :

10, 100, 1000, …

r = a3/a2

r = 1000/100

r = 10

r = a2/a1

r = 100/10

r = 10

It is geometric progression.

an = a1   rn - 1

an = 10   10n - 1

nth term of the sequence :

an = 10  (10)n - 1

Problem 6 :

6, -6, 6, -6, …

Solution :

6, -6, 6, -6, …

r = a3/a2

r = 6/(-6)

r = -1

r = a2/a1

r = -6/6

r = -1

It is geometric progression.

an = a1   rn - 1

an = 6   (-1)n - 1

nth term of the sequence :

an = 6   (-1)n - 1

Problem 7 :

1/4, 1/12, 1/36, 1/108, …

Solution :

1/4, 1/12, 1/36, 1/108, …

r = a3/a2

r = 1/36/1/12

r = 1/3

r = a2/a1

r = 1/12/1/4

r = 1/3

It is geometric progression.

an = a1   rn - 1

an = 1/4   (1/3)n - 1

nth term of the sequence :

an = ((1/3)n – 1)/4

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More