FINDING INVERSE OF QUADRATIC FUNTIONS

To find the inverse function of quadratic function, we have to follow the steps given below.

Standard form of a quadratic equation will be 

y = ax2 + bx + c

Step 1 :

Interchange x and y.

Step 2 :

Using completing the square method, convert the given quadratic function which is in standard form to vertex form.

Step 3 :

Solve for y and change y as f-1(x).

Problem 1 :

f(x) = x2 + 6x + 4

Solution:

f(x) = x2 + 6x + 4

Replace f(x) by y.

y = x2 + 6x + 4

Interchange x and y.

x = y2 + 6y + 4

x = (y2 + 6y + 9) - 9 + 4

x = (y + 3)2  - 5

(y + 3)2 = x + 5

Take square root on both sides.

y + 3 = ± √(x + 5)

y = ± √(x + 5) - 3

Replace y by f-1(x).

f-1(x) = ± √(x + 5) - 3

Problem 2 :

f(x) = 4x2 - 8x - 5

Solution:

f(x) = 4x2 - 8x - 5

Replace f(x) by y.

y = 4x2 - 8x - 5

Interchange x and y.

x = 4y2 - 8y - 5

= 4(y2 - 2y) - 5

= 4(y2 - 2y + 1 - 1) - 5

= 4[(y - 1)2 - 1] - 5

= 4(y - 1)2 - 4 - 5

x = 4(y - 1)2 - 9

x + 9 = 4(y - 1)2

x+94=(y-1)2

Take square root on both sides.

y-1=±x+94y-1=±x+92y=±x+92+1

Replace y by f-1(x).

f-1(x)=±x+92+1

Problem 3 :

f(x) = x2 - 8x + 12

Solution:

f(x) = x2 - 8x + 12

Replace f(x) by y.

y = x2 - 8x + 12

Interchange x and y.

x = y2 - 8y + 12

x = y2 - 8y + 42 - 42 + 12

= (y - 4)2 - 16 + 12

x = (y - 4)2 - 4

x + 4 = (y - 4)2

Take square root on both sides.

y - 4 = ± √(x + 4)

y = ± √(x + 4) + 4

Replace y by f-1(x).

f-1(x) = ± √(x + 4) + 4

Problem 4 :

f(x) = 9x2 + 12x + 7

Solution:

f(x) = 9x2 + 12x + 7

Replace f(x) by y.

y = 9x2 + 12x + 7

Interchange x and y.

x = 9y2 + 12y + 7

x=y2+129y+79=y2+43y+79x=y2+2(y)23+232+79-232x=y+232+39x=y+232+13x-13=y+232

Take square root on both sides.

y+23=±x-13y=±x-13-23

For each of the following functions, calculate the inverse function.

Problem 5 :

f(x) = x2 + 6x + 1

Solution:

f(x) = x2 + 6x + 1

Replace f(x) by y.

y = x2 + 6x + 1

Interchange x and y.

x = y2 + 6y + 1

x = (y2 + 6y + 9) - 9 + 1

= (y + 3)2 - 8

x + 8 = (y + 3)2

Take square root on both sides.

y + 3 = ± √(x + 8) 

y = ± √(x + 8) - 3

Replace y by f-1(x).

f-1(x) = ± √(x + 8) - 3

Problem 6 :

f(x) = x2 - 4x + 12

Solution:

f(x) = x2 - 4x + 12

Replace f(x) by y.

y = x2 - 4x + 12

Interchange x and y.

x = y2 - 4y + 12

x = (y2 - 4y + 4) - 4 + 12

x = (y - 2)2 + 8

x - 8 = (y - 2)2

Take square root on both sides.

y - 2 = ± √(x - 8) 

y = ± √(x - 8) + 2

Replace y by f-1(x).

 f-1(x) = ± √(x - 8) + 2

Problem 7 :

f(x) = x2 - 12x - 5

Solution:

f(x) = x2 - 12x - 5

Replace f(x) by y.

y = x2 - 12x - 5

Interchange x and y.

x = y2 - 12y - 5

x = (y2 - 12y + 36) - 36 - 5

x = (y - 6)2 - 41

x + 41 = (y - 6)2

Take square root on both sides.

y - 6 = ± √(x + 41) 

y = ± √(x + 41) + 6

Replace y by f-1(x).

f-1(x) = ± √(x + 41) + 6

Problem 8 :

f(x) = x2 + 10x + 15

Solution:

f(x) = x2 + 10x + 15

Replace f(x) by y.

y = x2 + 10x + 15

Interchange x and y.

x = y2 + 10y + 15

x = (y2 + 10y + 25) - 25 + 15

x = (y + 5)2 - 10

x + 10 = (y + 5)2

Take square root on both sides.

y + 5 = ± √(x + 10) 

y = ± √(x + 10) - 5

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More