To find the inverse function of quadratic function, we have to follow the steps given below.
Standard form of a quadratic equation will be
y = ax2 + bx + c
Step 1 :
Interchange x and y.
Step 2 :
Using completing the square method, convert the given quadratic function which is in standard form to vertex form.
Step 3 :
Solve for y and change y as f-1(x).
Problem 1 :
f(x) = x2 + 6x + 4
Solution:
f(x) = x2 + 6x + 4
Replace f(x) by y.
y = x2 + 6x + 4
Interchange x and y.
x = y2 + 6y + 4
x = (y2 + 6y + 9) - 9 + 4
x = (y + 3)2 - 5
(y + 3)2 = x + 5
Take square root on both sides.
y + 3 = ± √(x + 5)
y = ± √(x + 5) - 3
Replace y by f-1(x).
f-1(x) = ± √(x + 5) - 3
Problem 2 :
f(x) = 4x2 - 8x - 5
Solution:
f(x) = 4x2 - 8x - 5
Replace f(x) by y.
y = 4x2 - 8x - 5
Interchange x and y.
x = 4y2 - 8y - 5
= 4(y2 - 2y) - 5
= 4(y2 - 2y + 1 - 1) - 5
= 4[(y - 1)2 - 1] - 5
= 4(y - 1)2 - 4 - 5
x = 4(y - 1)2 - 9
x + 9 = 4(y - 1)2
Take square root on both sides.
Replace y by f-1(x).
Problem 3 :
f(x) = x2 - 8x + 12
Solution:
f(x) = x2 - 8x + 12
Replace f(x) by y.
y = x2 - 8x + 12
Interchange x and y.
x = y2 - 8y + 12
x = y2 - 8y + 42 - 42 + 12
= (y - 4)2 - 16 + 12
x = (y - 4)2 - 4
x + 4 = (y - 4)2
Take square root on both sides.
y - 4 = ± √(x + 4)
y = ± √(x + 4) + 4
Replace y by f-1(x).
f-1(x) = ± √(x + 4) + 4
Problem 4 :
f(x) = 9x2 + 12x + 7
Solution:
f(x) = 9x2 + 12x + 7
Replace f(x) by y.
y = 9x2 + 12x + 7
Interchange x and y.
x = 9y2 + 12y + 7
Take square root on both sides.
For each of the following functions, calculate the inverse function.
Problem 5 :
f(x) = x2 + 6x + 1
Solution:
f(x) = x2 + 6x + 1
Replace f(x) by y.
y = x2 + 6x + 1
Interchange x and y.
x = y2 + 6y + 1
x = (y2 + 6y + 9) - 9 + 1
= (y + 3)2 - 8
x + 8 = (y + 3)2
Take square root on both sides.
y + 3 = ± √(x + 8)
y = ± √(x + 8) - 3
Replace y by f-1(x).
f-1(x) = ± √(x + 8) - 3
Problem 6 :
f(x) = x2 - 4x + 12
Solution:
f(x) = x2 - 4x + 12
Replace f(x) by y.
y = x2 - 4x + 12
Interchange x and y.
x = y2 - 4y + 12
x = (y2 - 4y + 4) - 4 + 12
x = (y - 2)2 + 8
x - 8 = (y - 2)2
Take square root on both sides.
y - 2 = ± √(x - 8)
y = ± √(x - 8) + 2
Replace y by f-1(x).
f-1(x) = ± √(x - 8) + 2
Problem 7 :
f(x) = x2 - 12x - 5
Solution:
f(x) = x2 - 12x - 5
Replace f(x) by y.
y = x2 - 12x - 5
Interchange x and y.
x = y2 - 12y - 5
x = (y2 - 12y + 36) - 36 - 5
x = (y - 6)2 - 41
x + 41 = (y - 6)2
Take square root on both sides.
y - 6 = ± √(x + 41)
y = ± √(x + 41) + 6
Replace y by f-1(x).
f-1(x) = ± √(x + 41) + 6
Problem 8 :
f(x) = x2 + 10x + 15
Solution:
f(x) = x2 + 10x + 15
Replace f(x) by y.
y = x2 + 10x + 15
Interchange x and y.
x = y2 + 10y + 15
x = (y2 + 10y + 25) - 25 + 15
x = (y + 5)2 - 10
x + 10 = (y + 5)2
Take square root on both sides.
y + 5 = ± √(x + 10)
y = ± √(x + 10) - 5
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM