FINDING DOMAIN AND RANGE OF MODULUS FUNCTION AS INTERVAL NOTATION

Domain :

The set of all possible inputs is known as domain. For absolute value functions all real numbers will be domain.

Because there is no restriction to give inputs. So, for all absolute value functions domain will be  (-∞, ∞).

This graph will not go below -2 on y-axis. So, range is

-2 ≤ y 

Use interval notation to describe the domain and range of the given function.

Problem 1 :

f(x) = |-x|

Solution :

f(x) = |-x|

Domain: (-∞, ∞)

Range: [0, ∞), y ≥ 0

Problem 2 :

f(x) = -|x|

Solution :

f(x) = -|x|

Domain: (-∞, ∞)

Range: (-∞, 0], y ≤ 0

Problem 3 :

f(x) = (1/2)|x|

Solution :

f(x) = (1/2)|x|

Domain: (-∞, ∞)

Range: [0, ∞), y ≥ 0

Problem 4 :

f(x) = -2|x|

Solution :

f(x) = -2|x|

Domain: (-∞, ∞)

Range: (-∞, 0], y ≤ 0

Problem 5 :

f(x) = |x + 4|

Solution :

f(x) = |x + 4|

Domain: (-∞, ∞)

Range: [0, ∞), y ≥ 0

Problem 6 :

f(x) = |x - 2|

Solution :

f(x) = |x - 2|

Domain: (-∞, ∞)

Range: [0, ∞), y ≥ 0

Problem 7 :

f(x) = |x| + 2

Solution :

f(x) = |x| + 2

Domain: (-∞, ∞)

Range: [2, ∞), y ≥ 2

Problem 8 :

f(x) = |x| - 3

Solution :

f(x) = |x| - 3

Domain: (-∞, ∞)

Range: [-3, ∞), y ≥ -3

Problem 9 :

f(x) = |x + 3| + 2

Solution :

f(x) = |x + 3| + 2

Domain: (-∞, ∞)

Range: [2, ∞), y ≥ 2

Problem 10 :

f(x) = |x - 3| - 4

Solution :

f(x) = |x - 3| - 4

Domain: (-∞, ∞)

Range: [-4, ∞), y ≥ -4

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More