FIND THE SUM OF SPECIAL SERIES

Special series comes under one of the following category.

(i) Sum of natural numbers

1 + 2 + 3 + ....+ n = n(n +1)2

(ii)  Sum of squares

12+22+32+ ....+n2 = n(n+1)(2n+1)6

(iii) Sum of cubes 

13+23+33+ ....+n3 = n(n+1)2

(iv) Sum of odd numbers

1+3+5+7 ....+ n=n2=(l+1)2

Find the sum of following special series.

Problem 1 :

1 + 2 + 3 + … + 20

Solution :

Sum of natural numbers :

1 + 2 + 3 + … + n = n(n + 1)/2

n = 20

 1 + 2 + 3 + … + 20 = 20(20 + 1)/2

= 10(21)

= 210

Problem 2 :

12 + 22 + 32 + … + 102

Solution :

Sum of squares natural numbers :

12 + 22 + 32 + … + n2 = n(n + 1)(2n + 1)/6

n = 10

 = [10(10 + 1)(2(10) + 1)]/6

= 10(11)(20 + 1)/6

= 10(11)(21)/6

= 2310/6

= 385

Problem 3 :

2 + 8 + 18 + … + (2 × 152)

Solution :

Given, 2 + 8 + 18 + … + 450

2[1 + 4 + 9 + … + 225]

2[12 + 22 + 32 + …+ 152]

Sum of squares natural numbers :

12 + 22 + 32 + … + n2 = [n(n + 1)(2n + 1)]/6

n = 15

12 + 22 + 32 + … + 152 = 2 × 15(15 + 1)(2(15) + 1)/6

= 30(16)(31)/6

= 2480

Problem 4 :

2 + 4 + 6 + … + 100

Solution :

Sum of natural numbers :

= 2 + 4 + 6 + … + 100

Factoring 2 from all, we get

= 2(1 + 2 + 3 + … + 50)

n = 50

 = [2(50)(50+1)]/2

= 50(51)

= 2550

Problem 5 :

1 + 3 + 5 + … + 25

Solution :

Since we dont know the total number of terms, we can use the formula

= [(l + 1)/2]2

= [(25 + 1)/2]2

= 132

= 169

Problem 6 :

1 + 8 + 27 + … + 1000

Solution :

Sum of cubes natural numbers :

1 + 8 + 27 + … + 1000 = 13 + 23 + 33 + … + 103

13 + 23 + 33 + … + n3 = [n(n + 1)/2]2

n = 10

= [10(10 + 1)/2]2

= [5(11)]2

= (55)2

= 3025

Problem 7 :

112 + 122 + … + 242

Solution :

112 + 122 + … + 242

= (12 + 22 + … + 242) – (12 + 22 + … + 102)

n = 24 & n = 10

Sum of squares = n(n + 1)(2n + 1)/6

= [24(24 + 1)(2(24) + 1)/6] – [10(10 + 1)(2(10) + 1)/6]

= [24(25)(49)/6] – [10(11)(21)/6]

= 29400/6 – 2310/6

= 4900 – 385

= 4515

Problem 8 :

73 + 83 + … + 153

Solution :

73 + 83 + … + 153

= (13 + 23 + … + 153) – (13 + 23 + … + 63)

n = 15 & n = 6

Sum of cubes = [n(n + 1)/2]2

= [15(15 + 1)/2]2 – [6(6 + 1)/2]2

= [15(16)/2]2 – [6(7)/2]2

= [15(8)]2 – [3(7)]2

= [120]2 – [21]2

= (120 + 21) (120 – 21)

= 141(99)

= 13959

Problem 9 :

21 + 23 + … + 61

Solution :

21 + 23 + … + 61

= (1 + 3 + 5 + … + 61) – (1+ 3 + 5 … + 19)

l = 61 & l = 19

= [(61 + 1)/2]2 - [(19 + 1)/2]2

= (62/2)2 - (20/2)2

= 312 - 102

= (31 + 10) (31 - 10)

= 41 (21)

= 861

Problem 10 :

Calculate 21 + 23 + 25 … + 161

Solution :

21 + 23 + 25 … + 161

= (1 + 3 + 5 … + 161) – (1 + 3 + 5 + … + 19)

n = 161 & n = 19

= [(161 + 1)/2]2 -  [(19 + 1)/2]2

= (162/2)-  (20/2)2

= 81- 102

= (81+10)(81-10)

= 91(71)

= 6461

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More