FIND THE SUM OF N TERMS OF ARITHMETIC SERIES

To find sum of any arithmetic series, we use the formulas given below.

Sn = (n/2)(a + an)

Sn = (n/2)(2a + (n - 1)d)

a and a1 both are same, it refers the first term.

Find the indicated nth partial sum (Sn) of the arithmetic sequence.

Problem 1 :

8, 20, 32, 44, … n = 10

Solution :

8, 20, 32, 44, … n = 10

a = 8

 d = a2 – a1 ==> 20 – 8

d = 12

sn= (n/2)(2a + (n - 1) d)

s10= (10/2)(2(8) + (10 - 1) 12)

s10= 5(16 + 108)

s10= 5(124)

s10= 620

Problem 2 :

a1 = -6, d = 4, n = 50

Solution :

a1 = -6, d = 4, n = 50

an = a1 + (n – 1)d

a50 = -6 + (50 – 1)4

= -6 + (49) × 4

= -6 + 196

= 190

Sn = n/2(a1 + an)

S50 = 50/2(a1 + a50)

= 25(-6 + 190)

= 25(184)

S50 = 4600

Problem 3 :

100 + 105 + 110 + … + 220

Solution :

100 + 105 + 110 + … + 220

a= 100, a2 = 105

d = a2 – a1

= 105 – 100

d = 5

tn = a1 + (n – 1)d

220 = 100 + (n – 1)5

Subtracting 100 on both sides.

120 = 5n – 5

120 + 5 = 5n

125 = 5n

Dividing 5 on both sides.

125/5 = 5n/5

25 = n

Since we know the last term, we can use the formula

Sn = (n/2)(a1 + an)

S25 = (25/2)(100 + 220)

S25 = (25/2)(320)

S25 = 25(160)

S25 = 4000

Problem 4 :

0.5 + 1.3 + 2.1 + … + 70.1

Solution :

0.5 + 1.3 + 2.1 + … + 70.1

a= 0.5

a2 = 1.3

d = a2 – a1

= 1.3 – 0.5

d = 0.8

tn = a1 + (n – 1)d

70.1 = 0.5 + (n – 1)0.8

69.6 = 0.8n – 0.8

Adding 0.8 on both sides.

69.6 + 0.8 = 0.8n

70.4 = 0.8n

88 = n

Sn = n/2(a1 + an)

S88 = (88/2) (a1 + a88)

= 44(0.5 + 70.1)

= 44(70.6)

S88 = 3106.4

Problem 5 :

a1 = 3, d = 2, n = 12

Solution :

a1 = 3, d = 2, n = 12

an = a1 + (n – 1)d

a12 = 3 + (12 – 1)2

= 3 + (11) × 2

= 3 + 22

= 25

Sn = n/2(a1 + an)

S12 = 12/2(a1 + a12)

= 6(3 + 25)

= 6(28)

S12 = 168

Problem 6 :

a1 = 100, d = -5, n = 8

Solution :

a1 = 100, d = -5, n = 8

an = a1 + (n – 1)d

a8 = 100 + (8 – 1)(-5)

= 100 + (7) × (-5)

= 100 - 35

= 65

Sn = n/2(a1 + an)

S8 = 8/2(a1 + a8)

= 4(100 + 65)

= 4(165)

S8 = 660

Problem 7 :

a2 = 8, a5 = 9.5, n = 12

Solution :

a2 = 8, a5 = 9.5, n = 12

an = a1 + (n – 1)d

a2 = a1 + (2 – 1)d

8 = a1 + 1d --- (1)

a5 = a1 + (5 – 1)d

9.5 = a1 + 4d --- (2)

From (1) and (2)

-1.5 = -3d

Dividing -3 on both sides.

-1.5/-3 = -3/-3d

0.5 = d

Substitute (0.5) in equation (1)

8 = a1 + 1(0.5)

8 = a1 + 0.5

Subtracting 0.5 on both sides.

8 – 0.5 = a1 + 0.5 – 0.5

7.5 = a1

an = a1 + (n – 1)d

a12 = 7.5 + (12 – 1)0.5

= 7.5 + (11)0.5

= 7.5 + 5.5

a12 = 13

Sn = n/2(a1 + an)

S12 = 12/2(7.5 + a12)

= 6(7.5 + 13)

= 6(20.5)

S12 = 123

Problem 8 :

-3 + (-3/2) + 0 + … + 30

Solution :

-3 + (-3/2) + 0 + … + 30

a= -3

a2 = -3/2

d = -3/2 + 3

= -3/2 + 3/1 × 2/2

= -3/2 + 6/3

d = 3/2

tn = a1 + (n – 1)d

30 = -3 + (n – 1)3/2

Adding 3 on both sides.

30 + 3 = (n – 1)3/2

33 = 3/2n – 3/2

Adding 3/2 on both sides.

33 + 3/2 = 3/2n

66/2 + 3/2 = 3/2n

69/2 = 3/2n

23 = n

Sn = (n/2)(a1 + an)

S23 = (23/2)(a1 + a23)

= (23/2)(-3 + 30)

= (23/2) (27)

S23 = 621/2

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More