To find sum of any arithmetic series, we use the formulas given below.
Sn = (n/2)(a + an)
Sn = (n/2)(2a + (n - 1)d)
a and a1 both are same, it refers the first term.
Find the indicated nth partial sum (Sn) of the arithmetic sequence.
Problem 1 :
8, 20, 32, 44, … n = 10
Solution :
8, 20, 32, 44, … n = 10
a = 8
d = a2 – a1 ==> 20 – 8
d = 12
sn= (n/2)(2a + (n - 1) d)
s10= (10/2)(2(8) + (10 - 1) 12)
s10= 5(16 + 108)
s10= 5(124)
s10= 620
Problem 2 :
a1 = -6, d = 4, n = 50
Solution :
a1 = -6, d = 4, n = 50
an = a1 + (n – 1)d
a50 = -6 + (50 – 1)4
= -6 + (49) × 4
= -6 + 196
= 190
Sn = n/2(a1 + an)
S50 = 50/2(a1 + a50)
= 25(-6 + 190)
= 25(184)
S50 = 4600
Problem 3 :
100 + 105 + 110 + … + 220
Solution :
100 + 105 + 110 + … + 220
a1 = 100, a2 = 105
d = a2 – a1
= 105 – 100
d = 5
tn = a1 + (n – 1)d
220 = 100 + (n – 1)5
Subtracting 100 on both sides.
120 = 5n – 5
120 + 5 = 5n
125 = 5n
Dividing 5 on both sides.
125/5 = 5n/5
25 = n
Since we know the last term, we can use the formula
Sn = (n/2)(a1 + an)
S25 = (25/2)(100 + 220)
S25 = (25/2)(320)
S25 = 25(160)
S25 = 4000
Problem 4 :
0.5 + 1.3 + 2.1 + … + 70.1
Solution :
0.5 + 1.3 + 2.1 + … + 70.1
a1 = 0.5
a2 = 1.3
d = a2 – a1
= 1.3 – 0.5
d = 0.8
tn = a1 + (n – 1)d
70.1 = 0.5 + (n – 1)0.8
69.6 = 0.8n – 0.8
Adding 0.8 on both sides.
69.6 + 0.8 = 0.8n
70.4 = 0.8n
88 = n
Sn = n/2(a1 + an)
S88 = (88/2) (a1 + a88)
= 44(0.5 + 70.1)
= 44(70.6)
S88 = 3106.4
Problem 5 :
a1 = 3, d = 2, n = 12
Solution :
a1 = 3, d = 2, n = 12
an = a1 + (n – 1)d
a12 = 3 + (12 – 1)2
= 3 + (11) × 2
= 3 + 22
= 25
Sn = n/2(a1 + an)
S12 = 12/2(a1 + a12)
= 6(3 + 25)
= 6(28)
S12 = 168
Problem 6 :
a1 = 100, d = -5, n = 8
Solution :
a1 = 100, d = -5, n = 8
an = a1 + (n – 1)d
a8 = 100 + (8 – 1)(-5)
= 100 + (7) × (-5)
= 100 - 35
= 65
Sn = n/2(a1 + an)
S8 = 8/2(a1 + a8)
= 4(100 + 65)
= 4(165)
S8 = 660
Problem 7 :
a2 = 8, a5 = 9.5, n = 12
Solution :
a2 = 8, a5 = 9.5, n = 12
an = a1 + (n – 1)d
a2 = a1 + (2 – 1)d
8 = a1 + 1d --- (1)
a5 = a1 + (5 – 1)d
9.5 = a1 + 4d --- (2)
From (1) and (2)
-1.5 = -3d
Dividing -3 on both sides.
-1.5/-3 = -3/-3d
0.5 = d
Substitute (0.5) in equation (1)
8 = a1 + 1(0.5)
8 = a1 + 0.5
Subtracting 0.5 on both sides.
8 – 0.5 = a1 + 0.5 – 0.5
7.5 = a1
an = a1 + (n – 1)d
a12 = 7.5 + (12 – 1)0.5
= 7.5 + (11)0.5
= 7.5 + 5.5
a12 = 13
Sn = n/2(a1 + an)
S12 = 12/2(7.5 + a12)
= 6(7.5 + 13)
= 6(20.5)
S12 = 123
Problem 8 :
-3 + (-3/2) + 0 + … + 30
Solution :
-3 + (-3/2) + 0 + … + 30
a1 = -3
a2 = -3/2
d = -3/2 + 3
= -3/2 + 3/1 × 2/2
= -3/2 + 6/3
d = 3/2
tn = a1 + (n – 1)d
30 = -3 + (n – 1)3/2
Adding 3 on both sides.
30 + 3 = (n – 1)3/2
33 = 3/2n – 3/2
Adding 3/2 on both sides.
33 + 3/2 = 3/2n
66/2 + 3/2 = 3/2n
69/2 = 3/2n
23 = n
Sn = (n/2)(a1 + an)
S23 = (23/2)(a1 + a23)
= (23/2)(-3 + 30)
= (23/2) (27)
S23 = 621/2
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM