To find the sum of arithmetic series, we use the formula given below.
If last terms is given, we use the formula
Find the sum of
Problem 1 :
11 + 14 + 17 + … to 16 terms
Solution :
11 + 14 + 17 + … to 16 terms
a = 11, d = 14 – 11 ==> 3 and n = 16
Sn = (n/2)(2a + (n – 1)d)
= 16/2(2(11) + (16 – 1)3)
= 8(22 + (15)3)
= 8(22 + 45)
= 8(67)
S16 = 536
Problem 2 :
27 + 22 + 17 + … to 10 terms
Solution :
27 + 22 + 17 + … to 10 terms
a = 27, d = 22 – 27 ==> -5 and n = 10
Sn = (n/2)(2a + (n – 1)d)
= 10/2(2(27) + (10 – 1)(-5))
= 5(54 + (9 × (-5))
= 5(54 - 45)
= 5(9)
S10 = 45
Problem 3 :
5 + 17 + 29 + … + 161
Solution :
5 + 17 + 29 + … + 161
a = 5, d = 17 – 5 ==> 12
In the series above, we have last term. To find the number of terms, we use the formula
n = [(161 - 5)/12] + 1
n = (156/12) + 1
n = 13 + 1
n = 14
So, number of terms in the series is 14.
Sn= (n/2)(2a + (n – 1)d)
S14 = (14/2)(2(5) + (14 – 1)12)
= 7(10 + (13)(12))
= 7(10 + 156)
= 5(166)
S14 = 830
Problem 4 :
7.2 + 7.8 + 8.4 + … to 21terms
Solution :
7.2 + 7.8 + 8.4 + … to 21terms
a = 7.2, d = 7.8 – 7.2 ==> 6 and n = 21
Sn= (n/2) (2a + (n – 1)d)
S21 = (21/2) (2(7.2) + (21 – 1)6)
= 10.5 (14.4 + (20)6)
= 10.5 (14.4 + 120)
= 10.5 (134.4)
S21 = 1411.2
Problem 5 :
90 + 79 + 68 + … -20
Solution :
90 + 79 + 68 + … -20
a = 90, d = 79 – 90 ==> -11
In the series above, we have last term. To find the number of terms, we use the formula
n = [(-20 - 90)/(-11)] + 1
n = (-110/(-11)) + 1
n = 10 + 1
= 11
Sn = (n/2) (2a + (n – 1)d)
= (11/2) (2(90) + (11 – 1)(-11))
= 5.5 (180 + 10(-11))
= 5.5 (180 – 110)
= 5.5 (70)
S11 = 385
Problem 6 :
0.12 + 0.155 + 0.19 + … to 150 terms
Solution :
0.12 + 0.155 + 0.19 + … to 150 terms
a = 0.12, d = 0.155 – 0.12 ==> 0.035
n = 150
Sn = (n/2) (2a + (n – 1)d)
S150 = (150/2) (2(0.12) + (150 – 1)0.035)
= 75 (0.24 + (14)0.035)
= 75(0.24 + 0.49)
= 75(0.73)
S150 = 54.75
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM