Find the product of the complex numbers. Leave answers in polar form.
Problem 1 :
z1 = 6(cos 20° + i sin 20°)
z2 = 5(cos 50° + i sin 50°)
Solution:
By using z1 ⋅ z2 formula,
z1 ⋅ z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]
z1 ⋅ z2 = (6 ⋅ 5)[cos(20° + 50°) + i sin (20° + 50°)]
z1 ⋅ z2 = 30(cos 70° + i sin 70°)
Problem 2 :
z1 = 4(cos 15° + i sin 15°)
z2 = 7(cos 25° + i sin 25°)
Solution:
By using z1 ⋅ z2 formula,
z1 ⋅ z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]
z1 ⋅ z2 = (4 ⋅ 7)[cos(15° + 25°) + i sin (15° + 25°)]
z1 ⋅ z2 = 28(cos 40° + i sin 40°)
Problem 3 :
Solution:
By using z1 ⋅ z2 formula,
z1 ⋅ z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]
Problem 4 :
Solution:
By using z1 ⋅ z2 formula,
z1 ⋅ z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]
Problem 5 :
Solution:
By using z1 ⋅ z2 formula,
z1 ⋅ z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]
Problem 6 :
Solution:
By using z1 ⋅ z2 formula,
z1 ⋅ z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]
Problem 7 :
z1 = 1 + i
z2 = -1 + i
Solution:
z1 = 1 + i
x + iy = r(cos θ + i sin θ)
r = √(12 + 12)
r = √2
1 + i = √2 cos θ + √2 i sin θ
√2 cos θ = 1 cos θ = 1/√2 |
√2 sin θ = 1 sin θ = 1/√2 |
The angle lies in the first quadrant.
θ = 45° (or) π/4
z2 = -1 + i
r = √(-1)2 + 12)
r = √2
-1 + i = √2 cos θ + √2 i sin θ
√2 cos θ = -1 cos θ = -1/√2 |
√2 sin θ = 1 sin θ = 1/√2 |
θ lies in second quadrant.
θ = π - α
α = 45°
θ = π - π/4
θ = 3π/4
Problem 8 :
z1 = 1 + i
z2 = 2 + 2i
Solution:
z1 = 1 + i
x + iy = r(cos θ + i sin θ)
r = √(12 + 12)
r = √2
1 + i = √2 cos θ + √2 i sin θ
√2 cos θ = 1 cos θ = 1/√2 |
√2 sin θ = 1 sin θ = 1/√2 |
The angle lies in the first quadrant.
θ = 45° (or) π/4
z2 = 2 + 2i
r = √(2)2 + (2)2)
r = √8
2 + 2i = √8 (cos θ + i sin θ)
√8 cos θ = 2 |
√8 sin θ = 2 |
θ lies in first quadrant.
θ = π/4
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM