FIND THE PRODUCT OF COMPLEX NUMBERS IN POLAR FORM

Find the product of the complex numbers. Leave answers in polar form.

Problem 1 :

z1 = 6(cos 20° + i sin 20°)

z2 = 5(cos 50° + i sin 50°)

Solution:

By using z⋅ z2 formula,

z⋅ z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]

z1 ⋅ z2 = (6 ⋅ 5)[cos(20° + 50°) + i sin (20° + 50°)]

z1 ⋅ z2 = 30(cos 70° + i sin 70°)

Problem 2 :

z1 = 4(cos 15° + i sin 15°)

z2 = 7(cos 25° + i sin 25°)

Solution:

By using z1 ⋅ z2 formula,

z1 ⋅ z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]

z1 ⋅ z2 = (4 ⋅ 7)[cos(15° + 25°) + i sin (15° + 25°)]

z1 ⋅ z2 = 28(cos 40° + i sin 40°)

Problem 3 :

z1=3cos 𝜋5+i sin 𝜋5z2=4cos 𝜋10+i sin 𝜋10

Solution:

By using z⋅ z2 formula,

z1 ⋅ z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]

z1.z2=(3 . 4)cos 𝜋5+𝜋10+i sin𝜋5+𝜋10Taking the least common multiple, we getz1.z2=12cos2𝜋+𝜋10+i sin2𝜋+𝜋10z1.z2=12cos3𝜋10+i sin3𝜋10

Problem 4 :

z1=3cos 5𝜋8+i sin 5𝜋8z2=10cos 𝜋16+i sin 𝜋16

Solution:

By using z1 ⋅ z2 formula,

z1 ⋅ z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]

z1.z2=(3 .10)cos 5𝜋8+𝜋16+i sin5𝜋8+𝜋16Taking the least common multiple, we getz1.z2=30cos10𝜋+𝜋16+i sin10𝜋+𝜋16z1.z2=30cos11𝜋16+i sin11𝜋16

Problem 5 :

z1=cos 𝜋4+i sin 𝜋4z2=cos 𝜋3+i sin 𝜋3

Solution:

By using z1 ⋅ z2 formula,

z1 ⋅ z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]

z1.z2=cos 𝜋4+𝜋3+i sin𝜋4+𝜋3Taking the least common multiple, we getz1.z2=cos3𝜋+4𝜋12+i sin3𝜋+4𝜋12z1.z2=cos7𝜋12+i sin7𝜋12

Problem 6 :

z1=cos 𝜋6+i sin 𝜋6z2=cos 𝜋4+i sin 𝜋4

Solution:

By using z1 ⋅ z2 formula,

z1 ⋅ z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]

z1.z2=cos 𝜋6+𝜋4+i sin𝜋6+𝜋4Taking the least common multiple, we getz1.z2=cos2𝜋+3𝜋12+i sin2𝜋+3𝜋12z1.z2=cos5𝜋12+i sin5𝜋12

Problem 7 :

z1 = 1 + i

z2 = -1 + i

Solution:

z1 = 1 + i

x + iy = r(cos θ + i sin θ)

r = √(12 + 12)

r = √2

1 + i = √2 cos θ  + √2 i sin θ 

√2 cos θ = 1

 cos θ = 1/√2

√2 sin θ = 1

sin θ = 1/√2

The angle lies in the first quadrant.

θ = 45° (or) π/4

1+i=2cos 𝜋4+i sin 𝜋4

z2 = -1 + i

r = √(-1)2 + 12)

r = √2

-1 + i = √2 cos θ  + √2 i sin θ 

√2 cos θ = -1

cos  θ = -1/√2

√2 sin θ = 1

sin  θ = 1/√2

θ lies in second quadrant.

θ = π - α

α = 45°

θ = π - π/4

θ = 3π/4

-1+i=2cos 3𝜋4+i sin 3𝜋4z1.z2=2.2cos𝜋4+3𝜋4+i sin 𝜋4+3𝜋4=2cos 4𝜋4+i sin4𝜋4z1.z2=2(cos 𝜋+i sin 𝜋)

Problem 8 :

z1 = 1 + i

z2 = 2 + 2i

Solution:

z1 = 1 + i

x + iy = r(cos θ + i sin θ)

r = √(12 + 12)

r = √2

1 + i = √2 cos θ  + √2 i sin θ 

√2 cos θ = 1

 cos θ = 1/√2

√2 sin θ = 1

sin θ = 1/√2

The angle lies in the first quadrant.

θ = 45° (or) π/4

1+i=2cos 𝜋4+i sin 𝜋4

z2 = 2 + 2i

r = √(2)2 + (2)2)

r = √8 

2 + 2i = √8 (cos θ  + i sin θ) 

√8 cos θ = 2

cos 𝜃=28cos 𝜃=222cos 𝜃=12

√8 sin θ = 2

sin 𝜃=28sin 𝜃=222sin 𝜃=12

θ lies in first quadrant.

θ = π/4

2+2i=8cos 𝜋4+i sin 𝜋4z1.z2=2.8cos𝜋4+𝜋4+i sin 𝜋4+𝜋4=16cos 𝜋2+i sin𝜋2z1.z2=4cos 𝜋2+i sin 𝜋2

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More