FIND THE NTH TERM FROM GIVEN TWO TERMS OF ARITHMETIC PROGRESSION

To find nth term of the arithmetic sequence, we use the formula 

an = a1 + (n – 1)d

Here a1 is the first term, n represents the position of the term and d represents the common difference.

Find the nth term of the arithmetic sequence.

Problem 1 :

a1 = -4 and a5 = 16

Solution :

a1 = -4 and a5 = 16

Here a1 and a5 are 1st term and 5th term respectively.

an = a1 + (n – 1)d

a5 = a1 + (5 – 1)d

16 = -4 + 4d

Adding 4 on both sides.

16 + 4 = 4d

20 = 4d

Dividing 4 on both sides.

20/4 = 4/4d

5 = d

an = a1 + (n – 1)d

an = -4 + (n – 1)5

an = -4 + 5n – 5

an = 5n – 9

So, the nth term of the sequence is an = 5n – 9.

Problem 2 :

a3 = 94 and a6 = 85

Solution :

a3 = 94 and a6 = 85

an = a1 + (n – 1)d

a3 = a1 + (3 – 1)d

94 = a1 + 2d --- (1)

a6 = a1 + (6 – 1)d

85 = a1 + 5d --- (2)

From (1) and (2)

9 = -3d

Dividing -3 on both sides.

9/-3 = -3/-3d

-3 = d

Substitute (-3) in equation (1)

94 = a1 + 2(-3)

94 = a1 – 6

Adding 6 on both sides.

94 + 6 = a1 – 6 + 6

100 = a1

an = 100 + (n – 1)(-3)

an = 100 – 3n + 3

an = 97 – 3n

So, the nth term of the sequence is an = 97 – 3n.

Problem 3 :

a5 = 190 and a10 = 115

Solution :

a5 = 190 and a10 = 115

an = a1 + (n – 1)d

a5 = a1 + (5 – 1)d

190 = a1 + 4d --- (1)

a10 = a1 + (10 – 1)d

115 = a1 + 9d --- (2)

From (1) and (2)

75 = -5d

Dividing -5 on both sides.

75/-5 = -5/-5d

-15 = d

Substitute (-15) in equation (1)

190 = a1 + 4(-15)

190 = a1 – 60

Adding 60 on both sides.

190 + 60 = a1 – 60 + 60

250 = a1

an = 250 + (n – 1)(-15)

an = 250 – 15n + 15

an = 265 – 15n

So, the nth term of the sequence is an = 265 – 15n.

Problem 4 :

a6 = -38 and a11 = -73

Solution :

a6 = -38 and a11 = -73

an = a1 + (n – 1)d

a6 = a1 + (6 – 1)d

-38 = a1 + 5d --- (1)

a11 = a1 + (11 – 1)d

-73 = a1 + 10d --- (2)

From (1) and (2)

35 = -5d

Dividing -5 on both sides.

35/-5 = -5d/-5

-7 = d

Substitute (-7) in equation (1)

-38 = a1 + 5(-7)

-38 = a1 – 35

Adding 35 on both sides.

-38 + 35 = a1 – 35 + 35

-3 = a1

an = -3 + (n – 1)(-7)

an = -3 – 7n + 7

an = 4 – 7n

 

So, the nth term of the sequence is an = 4 – 7n.

Problem 5 :

a3 = 19 and a15 = -1.7

Solution :

a3 = 19 and a15 = -1.7

an = a1 + (n – 1)d

a3 = a1 + (3 – 1)d

19 = a1 + 2d --- (1)

a15 = a1 + (15 – 1)d

-1.7 = a1 + 14d --- (2)

From (1) and (2)

20.7 = -12d

Dividing -12 on both sides.

20.7/-12 = -12d/-12

-1.725 = d

Substitute (-1.725) in equation (1)

19 = a1 + 2(-1.725)

19 = a1 – 3.45

Adding 3.45 on both sides.

19 + 3.45 = a1 – 3.45 + 3.45

22.45 = a1

an = 22.45 + (n – 1)(-1.725)

an = 22.45 – 1.725n + 1.725

an = 24.175 – 1.725n

So, the nth term of the sequence is an = 24.175 – 1.725n.

Problem 6 :

a5 = 16 and a14 = 38.5

Solution :

a5 = 16 and a14 = 38.5

an = a1 + (n – 1)d

a5 = a1 + (5 – 1)d

16 = a1 + 4d --- (1)

a14 = a1 + (14 – 1)d

38.5 = a1 + 13d --- (2)

From (1) and (2)

-22.5 = -9d

Dividing -9 on both sides.

-22.5/-9 = -9d/-9

2.5 = d

Substitute (2.5) in equation (1)

16 = a1 + 4(2.5)

16 = a1 + 10

Subtracting 10 on both sides.

16 - 10 = a1 + 10 - 10

6 = a1

an = 6 + (n – 1)(2.5)

an = 6 + 2.5n – 2.5

an = 3.5 + 2.5n

So, the nth term of the sequence is an = 3.5 + 2.5n.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More