To find nth term of the arithmetic sequence, we use the formula
an = a1 + (n – 1)d
Here a1 is the first term, n represents the position of the term and d represents the common difference.
Find the nth
term of the arithmetic sequence.
Problem 1 :
a1 = -4 and a5 = 16
Solution :
a1 = -4 and a5 = 16
Here a1 and a5 are 1st term and 5th term respectively.
an = a1 + (n – 1)d
a5 = a1 + (5 – 1)d
16 = -4 + 4d
Adding 4 on both sides.
16 + 4 = 4d
20 = 4d
Dividing 4 on both sides.
20/4 = 4/4d
5 = d
an = a1 + (n – 1)d
an = -4 + (n – 1)5
an = -4 + 5n – 5
an = 5n – 9
So, the nth term of the sequence is an = 5n – 9.
Problem 2 :
a3 = 94 and a6 = 85
Solution :
a3 = 94 and a6 = 85
an = a1 + (n – 1)d
a3 = a1 + (3 – 1)d
94 = a1 + 2d --- (1)
a6 = a1 + (6 – 1)d
85 = a1 + 5d --- (2)
From (1) and (2)
9 = -3d
Dividing -3 on both sides.
9/-3 = -3/-3d
-3 = d
Substitute (-3) in equation (1)
94 = a1 + 2(-3)
94 = a1 – 6
Adding 6 on both sides.
94 + 6 = a1 – 6 + 6
100 = a1
an = 100 + (n – 1)(-3)
an = 100 – 3n + 3
an = 97 – 3n
So, the nth term of the sequence is an = 97 – 3n.
Problem 3 :
a5 = 190 and a10 = 115
Solution :
a5 = 190 and a10 = 115
an = a1 + (n – 1)d
a5 = a1 + (5 – 1)d
190 = a1 + 4d --- (1)
a10 = a1 + (10 – 1)d
115 = a1 + 9d --- (2)
From (1) and (2)
75 = -5d
Dividing -5 on both sides.
75/-5 = -5/-5d
-15 = d
Substitute (-15) in equation (1)
190 = a1 + 4(-15)
190 = a1 – 60
Adding 60 on both sides.
190 + 60 = a1 – 60 + 60
250 = a1
an = 250 + (n – 1)(-15)
an = 250 – 15n + 15
an = 265 – 15n
So, the nth term of the sequence is an = 265 – 15n.
Problem 4 :
a6 = -38 and a11 = -73
Solution :
a6 = -38 and a11 = -73
an = a1 + (n – 1)d
a6 = a1 + (6 – 1)d
-38 = a1 + 5d --- (1)
a11 = a1 + (11 – 1)d
-73 = a1 + 10d --- (2)
From (1) and (2)
35 = -5d
Dividing -5 on both sides.
35/-5 = -5d/-5
-7 = d
Substitute (-7) in equation (1)
-38 = a1 + 5(-7)
-38 = a1 – 35
Adding 35 on both sides.
-38 + 35 = a1 – 35 + 35
-3 = a1
an = -3 + (n – 1)(-7)
an = -3 – 7n + 7
an = 4 – 7n
So, the nth term of the sequence is an = 4 – 7n.
Problem 5 :
a3 = 19 and a15 = -1.7
Solution :
a3 = 19 and a15 = -1.7
an = a1 + (n – 1)d
a3 = a1 + (3 – 1)d
19 = a1 + 2d --- (1)
a15 = a1 + (15 – 1)d
-1.7 = a1 + 14d --- (2)
From (1) and (2)
20.7 = -12d
Dividing -12 on both sides.
20.7/-12 = -12d/-12
-1.725 = d
Substitute (-1.725) in equation (1)
19 = a1 + 2(-1.725)
19 = a1 – 3.45
Adding 3.45 on both sides.
19 + 3.45 = a1 – 3.45 + 3.45
22.45 = a1
an = 22.45 + (n – 1)(-1.725)
an = 22.45 – 1.725n + 1.725
an = 24.175 – 1.725n
So, the nth term of the sequence is an = 24.175 – 1.725n.
Problem 6 :
a5 = 16 and a14 = 38.5
Solution :
a5 = 16 and a14 = 38.5
an = a1 + (n – 1)d
a5 = a1 + (5 – 1)d
16 = a1 + 4d --- (1)
a14 = a1 + (14 – 1)d
38.5 = a1 + 13d --- (2)
From (1) and (2)
-22.5 = -9d
Dividing -9 on both sides.
-22.5/-9 = -9d/-9
2.5 = d
Substitute (2.5) in equation (1)
16 = a1 + 4(2.5)
16 = a1 + 10
Subtracting 10 on both sides.
16 - 10 = a1 + 10 - 10
6 = a1
an = 6 + (n – 1)(2.5)
an = 6 + 2.5n – 2.5
an = 3.5 + 2.5n
So, the nth term of the sequence is an = 3.5 + 2.5n.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM