FIND THE MISSING VALUE  WHEN DISTANCE IS GIVEN

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

To find distance between two points , we use the formula given below.

Let (x1, y1) and (x2, y2) be two endpoints of the line segment.

d = (x2 - x1)2+(y2 - y1)2(or)d = (x1 - x2)2+(y1 - y2)2

Use the given distance d between the two points to find the value of x or y.

Problem 1 :

(0, 3), (x, 5); d = 2√10

Solution :

d = √(x2 - x1)² + (y2 - y1

Let x1 = 0, x2 = x, y1 = 3, y2 = 5

Here d = 2√10

2√10 = √(x - 0)² + (5 - 3)²

2√10 = √x² + 2²

2√10 = √x² + 4

Taking squares on both sides,

(2√10)² = (√x² + 4)²

4 × 10 = x² + 4

40 = x² + 4

x² = 40 - 4

x² = 36

x = 6

So, the missing value of x is 6.

Problem 2 :

(-3, -1), (2, y); d = √41

Solution :

d = √(x2 - x1)² + (y2 - y1

Let x1 = -3, x2 = 2, y1 = -1, y2 = y

Here d = √41

√41 = √(2 + 3)² + (y + 1)²

√41 = √5² + (y + 1)²

√41 = √(25 + (y + 1)²)

Taking squares on both sides,

(√41)² = (√25 + (y + 1)²)²

41 = 25 + (y + 1)²

41 = 25 + y² + 1 + 2y

y² + 2y + 26 - 41 = 0

y² + 2y - 15 = 0

(y + 5) (y - 3) = 0

y = -5 (or) y = 3

So, the missing value of y is -5 or 3.

Problem 3 :

(x, 7), (-4, 1); d = 6√2

Solution :

d = √(x2 - x1)² + (y2 - y1

Let x1 = x, x2 = -4, y1 = 7, y2 = 1

Here d = 6√2

6√2 = √(-4 - x)² + (1 - 7)²

6√2 = √(-4 - x)² + (-6)²

6√2 = √(-4 - x)² + 36

Taking squares on both sides,

(6√2)² = (√(-4 - x)² + 36)²

36 × 2 = (-4 - x)² + 36

72 = x² + 8x + 16 + 36

x² + 8x + 52 - 72 = 0

x² + 8x - 20 = 0

(x - 2) (x + 10) = 0

x = 2 or x = -10

So, the missing value of x is 2 or -10.

Problem 4 :

(1, y), (8, 13); d = √74

Solution :

d = √(x2 - x1)² + (y2 - y1

Let x1 = 1, x2 = 8, y1 = y, y2 = 13

Here d = √74

√74 = √(8 - 1)² + (13 - y)²

√74 = √7² + (13 - y)²

√74 = √(49 + (13 - y)²)

Taking squares on both sides,

(√74)² = (√49 + (13 - y)²)²

74 = 49 + (13 - y)²

74 = 49 + 169 + y² - 26y

y² - 26y + 218 - 74 = 0

y² - 26y + 144 = 0

(y - 8) (y - 18) = 0

y = 8 or y = 18

So, the missing value of y is 8 or 18.

Problem 5 :

Find the value of a, if the distance between the points A (–3, –14) and B (a, –5) is 9 units.

Solution :

d = √(x2 - x1)² + (y2 - y1

Let x1 = -3, x2 = a, y1 = -14, y2 = -5

9 = √(a + 3)² + (-5 + 14)²

92 = (a + 3)² + 9²

(a + 3)² = 0

a + 3 = 0

a = -3

So, the value of a is -3.

Problem 6 :

If the point A (2, – 4) is equidistant from P (3, 8) and Q (–10, y), find the values of y. Also find distance PQ.

Solution :

Given that distance between PA and QA are equal.

PA = QA

√(3 - 2)² + (8 + 4)² = √(-10 - 2)² + (-4 - y)²

√1² + 12² = √(-12)² + (-4 - y)²

√(1 + 144) = √144 + (-4 - y)²

Removing square roots on both sides, 

145 = 144 + (-4 - y)²

145 - 144 = (-4 - y)²

1 = (-4 - y)²

√1 = (-4 - y)

-1 = -4 - y

-1 + 4 = -y

-y = 3

y = -3

1 = -4 - y

1 + 4 = -y

-y = 5

y = -5

So, the possible values of y are -3 and -5.

Problem 7 :

The centre of a circle is (2a, a – 7). Find the values of a if the circle passes through the point (11, –9) and has diameter 102 units.

Solution :

Center of the circle is (2a, a – 7).

One of the points lie on the circle is (11, -9)

Diameter of the circle = 102 units.

radius = 52 units.

Distance between center and one of the points lie on the circle = radius

√(2a - 11)² + (a - 7 + 9)² =  52

(2a - 11)² + (a + 2)² =  (52)2

(2a)² - 2(2a)(11) + 11² + a²  + 2(a) (2) + 2² = 25(2)

4a² - 44a + 121 + a² + 4a + 4 = 50

5a² - 40a + 125 - 50 = 0

5a² - 40a + 75 = 0

a² - 8a + 15 = 0

a² - 3a - 5a + 15 = 0

a(a - 3) - 5(a - 3) = 0

(a - 3)(a - 5) = 0

a = 3 and a = 5

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More