Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
To find distance between two points , we use the formula given below.
Let (x1, y1) and (x2, y2) be two endpoints of the line segment.
Use the given distance d between the two points to find the value of x or y.
Problem 1 :
(0, 3), (x, 5); d = 2√10
Solution :
d = √(x2 - x1)² + (y2 - y1)²
Let x1 = 0, x2 = x, y1 = 3, y2 = 5
Here d = 2√10
2√10 = √(x - 0)² + (5 - 3)²
2√10 = √x² + 2²
2√10 = √x² + 4
Taking squares on both sides,
(2√10)² = (√x² + 4)²
4 × 10 = x² + 4
40 = x² + 4
x² = 40 - 4
x² = 36
x = 6
So, the missing value of x is 6.
Problem 2 :
(-3, -1), (2, y); d = √41
Solution :
d = √(x2 - x1)² + (y2 - y1)²
Let x1 = -3, x2 = 2, y1 = -1, y2 = y
Here d = √41
√41 = √(2 + 3)² + (y + 1)²
√41 = √5² + (y + 1)²
√41 = √(25 + (y + 1)²)
Taking squares on both sides,
(√41)² = (√25 + (y + 1)²)²
41 = 25 + (y + 1)²
41 = 25 + y² + 1 + 2y
y² + 2y + 26 - 41 = 0
y² + 2y - 15 = 0
(y + 5) (y - 3) = 0
y = -5 (or) y = 3
So, the missing value of y is -5 or 3.
Problem 3 :
(x, 7), (-4, 1); d = 6√2
Solution :
d = √(x2 - x1)² + (y2 - y1)²
Let x1 = x, x2 = -4, y1 = 7, y2 = 1
Here d = 6√2
6√2 = √(-4 - x)² + (1 - 7)²
6√2 = √(-4 - x)² + (-6)²
6√2 = √(-4 - x)² + 36
Taking squares on both sides,
(6√2)² = (√(-4 - x)² + 36)²
36 × 2 = (-4 - x)² + 36
72 = x² + 8x + 16 + 36
x² + 8x + 52 - 72 = 0
x² + 8x - 20 = 0
(x - 2) (x + 10) = 0
x = 2 or x = -10
So, the missing value of x is 2 or -10.
Problem 4 :
(1, y), (8, 13); d = √74
Solution :
d = √(x2 - x1)² + (y2 - y1)²
Let x1 = 1, x2 = 8, y1 = y, y2 = 13
Here d = √74
√74 = √(8 - 1)² + (13 - y)²
√74 = √7² + (13 - y)²
√74 = √(49 + (13 - y)²)
Taking squares on both sides,
(√74)² = (√49 + (13 - y)²)²
74 = 49 + (13 - y)²
74 = 49 + 169 + y² - 26y
y² - 26y + 218 - 74 = 0
y² - 26y + 144 = 0
(y - 8) (y - 18) = 0
y = 8 or y = 18
So, the missing value of y is 8 or 18.
Problem 5 :
Find the value of a, if the distance between the points A (–3, –14) and B (a, –5) is 9 units.
Solution :
d = √(x2 - x1)² + (y2 - y1)²
Let x1 = -3, x2 = a, y1 = -14, y2 = -5
9 = √(a + 3)² + (-5 + 14)²
92 = (a + 3)² + 9²
(a + 3)² = 0
a + 3 = 0
a = -3
So, the value of a is -3.
Problem 6 :
If the point A (2, – 4) is equidistant from P (3, 8) and Q (–10, y), find the values of y. Also find distance PQ.
Solution :
Given that distance between PA and QA are equal.
PA = QA
√(3 - 2)² + (8 + 4)² = √(-10 - 2)² + (-4 - y)²
√1² + 12² = √(-12)² + (-4 - y)²
√(1 + 144) = √144 + (-4 - y)²
Removing square roots on both sides,
145 = 144 + (-4 - y)²
145 - 144 = (-4 - y)²
1 = (-4 - y)²
√1 = (-4 - y)
|
-1 = -4 - y -1 + 4 = -y -y = 3 y = -3 |
1 = -4 - y 1 + 4 = -y -y = 5 y = -5 |
So, the possible values of y are -3 and -5.
Problem 7 :
The centre of a circle is (2a, a – 7). Find the values of a if the circle passes through the point (11, –9) and has diameter 10√2 units.
Solution :
Center of the circle is (2a, a – 7).
One of the points lie on the circle is (11, -9)
Diameter of the circle = 10√2 units.
radius = 5√2 units.
Distance between center and one of the points lie on the circle = radius
√(2a - 11)² + (a - 7 + 9)² = 5√2
(2a - 11)² + (a + 2)² = (5√2)2
(2a)² - 2(2a)(11) + 11² + a² + 2(a) (2) + 2² = 25(2)
4a² - 44a + 121 + a² + 4a + 4 = 50
5a² - 40a + 125 - 50 = 0
5a² - 40a + 75 = 0
a² - 8a + 15 = 0
a² - 3a - 5a + 15 = 0
a(a - 3) - 5(a - 3) = 0
(a - 3)(a - 5) = 0
a = 3 and a = 5
Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM