To find the derivative of trig functions, we may use the rules given below
d (sin x) / dx = cos x
d (cos x) / dx = -sin x
d (tan x) / dx = sec2 x
d (sec x) / dx = sec x tan x
d (cot x) / dx = -cosec2 x
d (cosec x) / dx = -cosec x cot x
Problem 1 :
√x tan x
Solution :
= d/dx [√x tan x]
Problem 2 :
√(x tan x)
Solution :
= d/dx [√(x tan x)]
Problem 3 :
sin 2x + cos 3x
Solution :
= d/dx [sin 2x + cos 3x]
= cos 2x · d/dx (2x( + (- sin 3x) · d/dx [3x]
= cos 2x (2) - sin 3x (3)
dy/dx = 2 cos 2x - 3 sin 3x
Problem 4 :
sin (4θ + π/2)
Solution :
= sin (4θ + π/2)
y = cos 4θ
dy/dθ = d/dθ [cos (4θ)]
dy/dθ = (-sin 4θ) · d/dθ [4θ]
dy/dθ = -4 sin (4θ)
Problem 5 :
tan θ + sec θ
Solution :
= d/dx [tan θ + sec θ]
= d/dθ [tan θ] + d/dθ [sec θ]
= sec² (θ) + sec (θ) tan (θ)
Factoring sec θ
= sec (θ) [tan (θ) + sec (θ)]
Problem 6 :
sin 2x cos 3x
Solution :
= d/dx [sin 2x cos 3x]
Since two differentiable functions are multiplied, we can find the derivative using product rule.
u = sin 2x ==> u' = cos 2x (2) ==> u' = 2 cos 2x
v = cos 3x ==> v' = - sin 3x (3) ==> u' = -3 sin 3x
= 2 cos (2x) cos (3x) - 3 sin (2x) sin (3x)
Problem 7 :
sin (2 cos 3x)
Solution :
= d/dx [sin (2 cos 3x)]
= cos (2 cos (3x)) · d/dx [2 cos (3x)]
= cos (2 cos (3x)) · 2 (-sin 3x) (3)
= - 6 cos (2 cos (3x)) (sin 3x)
= -6 sin (3x) cos (2 cos (3x))
Problem 8 :
sec³ x4
Solution :
= d/dx [sec³ x4]
= 3 sec² (x4) sec (x4)
tan (x4) d/dx [x4]
= 3 tan (x4) 4 sec3 (x4) x3
= 12x³ sec³ (x4) tan (x4)
Problem 9 :
arctan (3x - 5)
Solution :
y = tan-1(3x - 5)
Problem 10 :
arcsin (3x - 5)
Solution :
y = sin-1(3x - 5)
Problem 11 :
2x+cosx
Solution :
y = 2x+cosx
d(ax)/dx = ax ln a
= d/dx [2x+cosx]
= ln (2) · 2x+cosx · d/dx [x + cos x]
= ln (2) · 2x+cosx · d/dx [x] + d/dx [cos x]
= ln (2) · 2x+cosx · (1 - sin x)
Problem 12 :
y = x log x
Solution :
y = x log x
Since two differentiable functions are multiplied, we use the product rule.
u = x and v = log x
u' = 1 and v' = 1/x
dy/dx = x (1/x) + log x (1)
dy/dx = 1 + log x
Problem 13 :
y = (sin x)²
Solution :
= d/dx [(sin x)²]
dy/dx = 2 sin (x) d/dx [sin (x)]
dy/dx = 2 sin (x) cos (x)
dy/dx = sin 2x
Problem 14 :
y = sin 2x - cos 4x
Solution :
= d/dx [sin 2x - cos 4x]
= d/dx [sin 2x] - d/dx [cos 4x]
= cos 2x d/dx [2x] - (-sin 4x) d/dx [4x]
= cos (2x) (2) + sin 4x (4)
= 2 cos (2x) + 4 sin 4x
= 4 sin 4x + 2 cos 2x
Problem 15:
y = 4x sin x
Solution :
= d/dx [4x sin(x)]
= 4 d/dx [x sin(x)]
u = x and v = sin x
u' = 1 and v' = cos x
= 4 [ x cos x + sin x (1) ]
= 4x cos x + 4 sin x
Problem 16 :
y = log(x² + 1)
Solution :
= d/dx [log(x² + 1)]
= 1/(x² + 1) · d/dx [x² + 1]
= 2x + 0 / (x² + 1)
= 2x / (x² + 1)
Problem 17:
y = ex sin x
Solution:
= d/dx [ex sin x]
= d/dx [ex] sin (x) + ex · d/dx [sin (x)]
= ex sin (x) + ex cos (x)
= ex [sin (x) + cos (x)]
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM