To find cube of the binomial, we will use one of the formulas given below.
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a - b)3 = a3 - 3a2b + 3ab2 - b3
Problem 1 :
Find the cube of 2x + 3y.
Solution :
Write the formula for (a + b)³ = a³ + b³ + 3a²b + 3ab²
(2x + 3y)³ = (2x)³ + (3y)³ + 3(2x)²(3y) + 3(2x)(3y)²
= 8x³ + 27y³ + 3(12x²y) + 3(18xy²)
(2x + 3y)³ = 8x³ + 27y³ + 36x²y + 54xy²
Problem 2 :
Find the cube of (2x - y)3
Solution :
Write the formula for (a - b)³ = a³ - b³ - 3a²b + 3ab²
(2x - y)³ = (2x)³ - (y)³ - 3(2x)²(y) + 3(2x)(y)²
= 8x³ - y³ - 3(4x²y) + 3(2xy²)
(2x - y)³ = 8x³ - y³ - 12x²y + 6xy²
Problem 3 :
If x = 37, what is the value of 8x³ + 72x² + 216x + 216?
Solution :
Instead of applying the values directly, let us simplify the given expression, we get
= 8x³ + 72x² + 216x + 216
= (2x)3 + 3(2x)2 (6) + 3(2x) (62)+ 63
= (2x + 6)3
= (2(37) + 6)3
= (80)3
= 512000
Hence the value of 8x³ + 72x² + 216x + 216 is 512000.
Problem 4 :
If x – y = 8 and xy = 5, what is the value of x³ - y³ + 8(x + y)² ?
Solution :
Write the formula for a³ - b³ = (a - b)³ + 3ab(a - b)
x³ - y³ = (x - y)³ + 3xy(x - y)
x – y = 8 and xy = 5
Substitute the given values
x³ - y³ = (8)³ + 3(5) (8)
x³ - y³ = 512 + 120
x³ - y³ = 632
(x - y)² = x² + y² - 2xy
(8)² = x² + y² - 2(5)
64 = x² + y² - 10
x² + y² = 64 + 10
x² + y² = 74
Substitute x² + y² = 74 in this formula
(x + y)² = x² + y² + 2ab
= 74 + 2(5)
= 74 + 10
(x + y)² = 84
x³ - y³ + 8(x + y)² = 632 + 8(84)
= 632 + 672
= 1304
Hence the value of x³ - y³ + 8(x + y)² is 1304.
Problem 5 :
If a – b = 5 and ab = 36, what is the value of a³ - b³?
Solution :
Write the formula for (a + b)² = a² + b² + 2ab
Given that, a – b = 5 and ab = 36
a – b = 5
Square both sides
(a - b)² = 5²
a² + b² - 2ab = 25
a² + b² - 2(36) = 25
a² + b² = 25 + 72
a² + b² = 97
a³ - b³ = (a - b) (a² + b² + ab)
Put ab = 36 and a² + b² = 97
a³ - b³ = 5(97 + 36)
a³ - b³ = 5(133)
a³ - b³ = 665
Hence the value of a³ - b³ is 665.
Problem 6 :
If a³ - b³ = 513 and a – b = 3, what is the value of ab?
Solution :
Write the formula for a³ - b³ = (a - b)³ + 3ab(a - b)
a³ - b³ = 513 and a – b = 3
(a - b)³ + 3ab(a - b) = 513
(3)³ + 3ab (3) = 513
27 + 9ab = 513
9ab = 513 – 27
9ab = 486
ab = 486 / 9
ab = 54
Hence the value of ab is 54.
Problem 7 :
If x = 19 and y = -12, find the value of 8x³ + 36x²y + 54xy² + 27y³.
Solution :
8x³ + 36x²y + 54xy² + 27y³
Instead of applying the given values into the question directly, let us try to simplify the given expression first.
= (2x)3 + 3(2x)2 (3y) + 3(2x) (3y)2 + (3y)3
= (2x + 3y)3
By applying the given values of x and y, we get
= (2x + 3y)3
= (2(19) + 3(-12))3
= (38 - 36)3
= 23
= 8
Hence the value of 8x³ + 36x²y + 54xy² + 27y³ is 8.
Problem 8 :
If a = 15, what is the value of 8a³ + 60a² + 150a + 130?
Solution :
= 8(15)³ + 60(15)² + 150(15) + 130
= 8(3375) + 60(225) + 2250 + 130
= 27000 + 13500 + 2250 + 130
= 42880
Hence the value of 8a³ + 60a² + 150a + 130 is 42880.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM