The domain of a function is the set of values that we are allowed to plug into our function.
The range of a function is the set of values that the function assumes. This set is the values that the function shoots out after we plug an x value in.
Find the range for the functions with domain D :
Problem 1 :
D = {-1, 0,
2, 7, 9}, function: ‘add 3’.
Solution :
Let us create the function for the given rule.
f(x) = x + 3
D = {-1, 0, 2, 7, 9}
If x = -1 f(-1) = -1 + 3 f(-1) = 2 |
if x = 0 f(0) = 0 + 3 f(0) = 3 |
if x = 2 f(2) = 2 + 3 f(2) = 5 |
if x = 7 f(7) = 7 + 3 f(7) = 10 |
if x = 9 f(9) = 9 + 3 f(9) = 12 |
Range = {2, 3, 5, 10, 12}
Problem 2 :
D = {-2, -1, 0, 1, 2}, function: ‘square and then divide by 2’.
Solution :
Let us create the function for the given rule.
f(x) = x²/2
D = {-2, -1, 0, 1, 2}
If x = -2 f(-2) = (-2)²/2 = 4/2 f(-2) = 2 |
if x = -1 f(-1) = (-1)²/2 f(-1) = 1/2 |
if x = 0 f(0) = 0/2 f(0) = 0 |
if x = 1 f(1) = (1)²/2 f(1) = 1/2 |
if x = 2 f(2) = (2)²/2 = 4/2 f(2) = 2 |
Range = {2, 1/2, 0, 1/2, 2}
Problem 3 :
D = {x | -2 < x < 2}, function: ‘multiply x by 2 then add 1’.
Solution :
f(x) = 2x + 1
D = {-1, 0, 1}
If x = -1 f(-1) = 2(-1) + 1 = -2 + 1 f(-1) = -1 |
if x = 0 f(0) = 0 + 1 f(0) = 1 |
if x = 1 = 2 + 1 f(1) = 3 |
Range = {-1, 1, 3}
Problem 4 :
D = {x | -3 ≤ x ≤ 4}, function: ‘cube x’.
Solution :
f(x) = x³
D = {-3, -2, -1, 0, 1, 2, 3, 4}
If x = -3 ==> f(-3) = (-3)3 ==> -27
If x = -2 ==> f(-2) = (-2)3 ==> -8
If x = -1 ==> f(-1) = (-1)3 ==> -1
If x = 0 ==> f(0) = (0)3 ==> 0
If x = 1 ==> f(1) = (1)3 ==> 1
If x = 2 ==> f(2) = 23 ==> 8
If x = 3 ==> f(3) = 33 ==> 27
If x = 4 ==> f(4) = 43 ==> 64
Range = {-27, 8, -1, 0, 1, 8, 27, 64}
Problem 2 :
For the domain {0, 1, 2, 3} and the function ‘subtract 2’, find the range.
Solution :
f(x) = x - 2
D = {0, 1, 2, 3}
If x = 0 ==> f(0) = 0 - 2 ==> -2
If x = 1 ==> f(1) = 1 - 2 ==> -1
If x = 2 ==> f(2) = 2 - 2 ==> 0
If x = 3 ==> f(3) = 3 - 2 ==> 1
Range = {-2, -1, 0, 1}
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM