Quadratic Polynomial :
The polynomial which is having highest exponent of 2 will have two linear factors.
To find factors, we can use factoring method, if it is not factorable we have to solve the quadratic equation by equating the polynomial to 0 and use quadratic formula.
Once we get zeroes, convert them as factors.
Cubic Polynomial :
The polynomial which is having highest exponent of 3 will have three linear factors. The following methods will be helpful to find factors of cubic polynomial.
Find the linear factors of :
Problem 1 :
2x2 - 7x - 15
Solution :
2x2 - 7x - 15
2x2 - 10x + 3x - 15
2x(x - 5) + 3(x - 5)
(2x + 3) (x - 5)
So, the linear factors are (2x + 3) (x - 5).
Problem 2 :
z2 - 6z + 16
Solution :
z2 - 6z + 16
By using quadratic formula.
a = 1, b = -6 and c = 16
z = 3 + i√7 and z = 3 - i√7
(z - 3 + i√7) (z - 3 - i√7)
So, the linear factors are (z - 3 + i√7) (z - 3 - i√7).
Problem 3 :
x3 + 2x2 - 4x
Solution :
x3 + 2x2 - 4x
x(x2 + 2x - 4)
By using quadratic formula.
a = 1, b = 2 and c = -4
x = (-1 + √5) and x = (-1 - √5)
x + 1 - √5 = 0 and x + 1 + √5 = 0
x(x + 1 + √5) (x + 1 - √5)
So, the linear factors are x(x + 1 + √5) (x + 1 - √5).
Problem 4 :
6z3 - z2 - 2z
Solution :
6z3 - z2 - 2z
z(6z2 - z - 2)
z(6z2 + 3z - 4z - 2)
z(3z (2z + 1) - 2 (2z + 1))
z(3z - 2) (2z + 1)
So, the linear factors are z(3z - 2) (2z + 1).
Problem 5 :
z4 - 6z2 + 5
Solution :
z4 - 6z2 + 5
z4 - z2 - 5z2 + 5 = 0
z2(z2 - 1) - 5(z2 - 1) = 0
(z2 - 5) (z2 - 1) = 0
z2 - 5 = 0
z2 = 5
Squaring on each sides.
z = ±√5
(z + √5) (z - √5)
z2 - 1 = 0
z2 = 1
Squaring on each sides.
z = ±√1
z = ±1
(z + 1) (z - 1)
So, the linear factors are (z + 1) (z - 1) (z + √5) (z - √5).
Problem 6 :
z4 - z2 - 2
Solution :
z4 - z2 - 2
z4 + z2 - 2z2 - 2 = 0
z2(z2 + 1)- 2(z2 + 1) = 0
(z2 - 2) (z2 + 1) = 0
z2 - 2 = 0
z2 = 2
Squaring on each sides.
z = ±√2
(z +√2) (z - √2)
z2 + 1 = 0
z2 = -1
Squaring on each sides.
z = ±i
(z + i) (z - i)
So, the linear factors are (z + i) (z - i) (z +√2) (z - √2).
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM