# FIND FACTORS OF POLYNOMIALS USING ALGEBRAIC IDENTITIES

Any one of the Algebraic identities will be useful to find factors of expression.

(a + b)2 = a2 + 2ab + b2

(a - b)= a2 - 2ab + b2

a2 - b2 = (a + b)(a - b)

a3 - b3 = (a - b)(a2 + ab + b2)

a3 + b3 = (a + b)(a2 - ab + b2)

Factorize each polynomial using algebraic identity.

Problem 1 :

49p² - q²

Solution :

49p² - q² = (7p)² - q²

a² - b² = (a + b) (a - b)

(7p)² - q² = (7p + q) (7p - q)

Problem 2 :

64 - d²

Solution :

64 - d² = 8² - d²

a² - b² = (a + b) (a - b)

8² - d² = (8 + d) (8 - d)

Problem 3 :

u² - 16v

Solution :

u² - 16v is not factorable.

Problem 4 :

27u³ + 343v³

Solution :

27u³ + 343v³ = (3u)³ + (7v)³

a³ + b³ = (a + b) (a² - ab + b²)

(3u)³ + (7v)³ = (3u + 7v) [(3u)² - (3u)(7v) + (7v)²]

= (3u + 7v) (9u² - 21uv + 49v²)

Problem 5 :

c³ + 216

Solution :

c³ + 216 = c³ + 6³

a³ + b³ = (a + b) (a² - ab + b²)

c³ + 6³ = (c + 6) [(c²) - (6c) + (6)²]

= (c + 6) (c² - 6c + 36)

Problem 6 :

512z³ - 1

Solution :

512z³ - 1 = (8z)³ - 1³

a³ - b³ = (a - b) (a² + ab + b²)

(8z)³ - 1³ = (8z - 1) [(8z)² + (8z)(1) + 1²]

= (8z - 1) (64z² + 8z + 1)

Problem 7 :

16p² + 56p + 49

Solution :

(a + b)² = a² + 2ab + b²

16p² + 56p + 49 = (4p)² + 2(4p)(7) + 7²

= (4p + 7)²

= (4p + 7) (4p + 7)

Problem 8 :

s² + 16st + 64t²

Solution :

(a + b)² = a² + 2ab + b²

s² + 16st + 64t² = s² + 2(s)(8t) + (8t)²

= (s + 8t)²

= (s + 8t) (s + 8t)

Problem 9 :

k² - 18k + 81

Solution :

(a - b)² = a² - 2ab + b²

k² - 18k + 81 = k² - 2(k)(9) + 9²

= (k - 9)²

= (k - 9) (k - 9)

Problem 10 :

m² - 6mn + 9n²

Solution :

(a - b)² = a² - 2ab + b²

m² - 6mn + 9n² = m² - 2(m)(3n) + (3n)²

= (m - 3n)²

= (m - 3n) (m - 3n)

## Recent Articles

1. ### Finding Range of Values Inequality Problems

May 21, 24 08:51 PM

Finding Range of Values Inequality Problems

2. ### Solving Two Step Inequality Word Problems

May 21, 24 08:51 AM

Solving Two Step Inequality Word Problems