FIND ALL ZEROS OF THE POLYNOMIAL

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

To find zeroes of the polynomial, we have different methods as follows.

i) Factoring

ii) Using synthetic division

iii)  Using rational root theorem

Problem 1 :

Find all of the rational zeros of 

f(x) = 5x3 + 12x2 - 29x + 12

Solution :

f(x) = 5x3 + 12x2 - 29x + 12

an = 5 and a0 = 12

Factor of a0, values of p = ±1, ±2, ±3, ±4, ±6, ±12

Factor of avalues of q = ±1, ±5

p/q =±1, ±2, ±3, ±4, ±6, ±12, ±2/5, ±3/5, ±4/5±6/5, ±12/5

Using synthetic division,

finding-zeros-of-polynomial-q1

1 is the solution. To find the other two solutions, let us solve this quadratic equation got as quotient.

5x2 + 17x - 12 = 0

5x2 + 20x - 3x - 12 = 0

5x(x + 4) - 3(x + 4) = 0

(5x - 3) (x + 4) = 0

x = 3/5 and x = -4

So, the solutions are -4, 1 and 3/5.

Problem 2 :

f(x) = 8x4 + 2x3 + 5x2 + 2x - 3

Solution :

Using rational root theorem, we find the possible roots for the given polynomial.

an = 8 and a0 = -3

Factor of a0, values of p = ±1, ±3

Factor of avalues of q = ±1, ±2, ±4, ±8

p/q =±1, ±1/2, ±1/4±1/8, ±3/2, ±3/4, ±3/8

Using remainder theorem,

f(1) = 8(1)4 + 2(1)3 + 5(1)2 + 2(1) - 3

= 8 + 2 + 5 + 2 - 3

≠ 0

f(-1) = 8(-1)4 + 2(-1)3 + 5(-1)2 + 2(-1) - 3

= 8 - 2 + 5 - 2 - 3

≠ 0

f(1/2) = 8(1/2)4 + 2(1/2)3 + 5(1/2)2 + 2(1/2) - 3

= 8(1/16) + 2(1/8) + 5(1/4) + 1 - 3

= 1/2 + 1/4 + 5/4 - 2

= (2 + 1 + 5 - 8)/4

= 0

So 1/2 is one of the solutions

finding-zeros-of-polynomial-q2.png

The quotient = 8x3 + 6x2 + 8x + 6

Solving this quotient, we will get the remaining zeroes.

2x2(4x + 3) + 2(4x + 3) = 0

(2x2 + 2)(4x + 3) = 0

2(x2 + 1)(4x + 3) = 0

x = -3/4 and x = ±i

So, the solutions are 1/2, -3/4 and ±i

Problem 3 :

x3 + 4x2 - 25x - 28

Solution :

finding-zeros-of-polynomial-q3.png

From the above synthetic division, it is clear that -1 is one of the solution.

The quotient = x2 + 3x - 28 = 0

(x + 7)(x - 4) = 0

x = -7 and x = 4

So, the solution are -1, 4 and -7.

Problem 4 :

x4 + 2x3 - 11x2 + 8x - 60

Solution :

Using rational root theorem, we find the possible roots for the given polynomial.

an = 1 and a0 = -60

Factor of a0, values of p = ±1, ±2, ±3, ±4, ±5, ±10,  ±12, ±15, ±20, ±30, ±60

Factor of avalues of q = ±1

p/q = ±1, ±2, ±3, ±4, ±5, ±10,  ±12, ±15, ±20, ±30, ±60

finding-zeros-of-polynomial-q4.png

So, 3 is one of the solutions.

The quotient = x3 + 5x2 + 4x + 20 = 0

x2 (x + 5) + 4 (x + 5) = 0

(x2 + 4) (x + 5) = 0

x2 + 4 = 0 and x + 5 = 0

x = ±2i and x = -5

Problem 5 :

x3 + 6x2 + 4x + 24

Solution :

Using rational root theorem, we find the possible roots for the given polynomial.

an = 1 and a0 = 24

Factor of a0, values of p = ±1, ±2, ±3, ±4, ±6, ±8,  ±12, ±24

Factor of avalues of q = ±1

p/q = ±1, ±2, ±3, ±4, ±6, ±8,  ±12, ±24

x3 + 6x2 + 4x + 24 = 0

x2(x + 6) + 4(x + 6) = 0

(x2+ 4) (x + 6) = 0

x2+ 4 = 0 and x = -6

x= - 4

x = ±i

So, the solution -6, i and -i.

Problem 6 :

4x4 + 5x3 + 30x2 + 45 x - 54

Solution :

Using rational root theorem, we find the possible roots for the given polynomial.

finding-zeros-of-polynomial-q5.png

So, one of the solutions is -2.

4x3 - 3x2 + 36x - 27 = 0

x2(4x - 3) + 9(4x - 3) = 0

(x2+ 9)(4x - 3) = 0

x2+ 9 = 0 and 4x - 3 = 0

x= - 9 and x = 3/4

x = ±3i

So, the solutions are -2, 3/4, 3i and -3i

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More