FACTORIZATION USING ALGEBRAIC IDENTITIES

Any one of the Algebraic identities will be useful to find factors of expression.

(a + b)2 = a2 + 2ab + b2

(a - b)= a2 - 2ab + b2

a2 - b2 = (a + b)(a - b)

a3 - b3 = (a - b)(a2 + ab + b2)

a3 + b3 = (a + b)(a2 - ab + b2)

Factorize each polynomial using algebraic identity.

Problem 1 :

w² - 4

Solution :

w² - 4 = w² - 2²

a² - b² = (a + b) (a - b)

w² - 2² = (w + 2) (w - 2)

Problem 2 :

a² - b²

Solution :

a² - b² = (a + b) (a - b)

Problem 3 :

9 - 16t²

Solution :

9 - 16t² = 3² - (4t)²

a² - b² = (a + b) (a - b)

3² - (4t)² = (3 + 4t) (3 - 4t)

Problem 4 :

8a³ - 27b³

Solution :

8a³ - 27b³ = (2a)³ - (3b)³

a³ - b³ = (a - b) (a² + ab + b²)

= (2a - 3b) [(2a)² + (2a)(3b) + (3b)²]

= (2a - 3b) (4a² + 6ab + 9b²)

Problem 5 :

m³ + n³

Solution :

a³ + b³ = (a + b) (a² - ab + b²)

m³ + n³ = (m + n) (m² - mn + n²)

Problem 6 :

125x³ - 64

Solution :

125x³ - 64 = (5x)³ - 4³

a³ - b³ = (a - b) (a² + ab + b²)

= (5x - 4) [(5x)² + (5x)(4) + (4)²]

= (5x - 4) (25x² + 20x + 16)

Problem 7 :

x² + 10x + 25

Solution :

(a + b)² = a² + 2ab + b²

x² + 10x + 25 = (x)² + 2(x)(5) + (5)²

= (x + 5)²

= (x + 5) (x + 5)

Problem 8 :

36u² - 12uv + v²

Solution :

(a - b)² = a² - 2ab + b²

36u² - 12uv + v² = (6u)² - 2(6u)(v) + (v)²

= (6u - v)²

= (6u - v) (6u - v)

Problem 9 :      

4a² - 4a + 1

Solution :

(a - b)² = a² - 2ab + b²

4a² - 4a + 1 = (2a)² - 2(2a)(1) + 1²

= (2a - 1)²

= (2a - 1) (2a - 1)

Problem 10 :

25x² - 36

Solution :

25x² - 36 = (5x)² - (6)²

a² - b² = (a + b) (a - b)

(5x)² - (6)² = (5x + 6) (5x - 6)

Problem 11 :

If t > 0 and t2 − 4 = 0, what is the value of t ?

Solution :

t2 − 4 = 0

Using the algebraic identity, 

t2 − 22 = 0

(t + 2)(t - 2) = 0

t = -2 and t = 2

Since the condition is t > 0, the value fo t is 2.

Problem 12 :

If x^a2/ x^b2 = 16, x > 1 and a + b = 2, what is the value of a - b ?

Solution :

x^a2/ x^b2 = 16

xa^2-b^2 = 16

Since the bases are equal, we can equate the powers.

a2 - b2 = 16

(a + b)(a - b) = 16

Applying the value of a + b, we get

2(a - b) = 16

a - b = 16/2

a - b = 8

So, the value fo a - b is 8.

Problem 13 :

x2 + y2 + 4x - 2y = -1

The equation of a circle in the xy-plane is shown above. What is the radius of the circle ?

a)  2      b)  3     c)  4      d)  9

Solution :

x2 + y2 + 4x - 2y = -1

x2 + 4x + y2 - 2y + 1 = 0

x2 + 2x(2) + 22 - 22+ y2 - 2y(1) + 12 - 1+ 1 = 0

(x + 2)2 + (y - 1)2 - 4 - 1 + 1 = 0

(x + 2)2 + (y - 1)2 = 4

(x + 2)2 + (y - 1)2 = 22

Comparing with,

(x - h)2 + (y - k)2 = r2

Radius = 2

option a is correct.

Problem 14 :

The equation

x2 + (y - 1)2 = 49

represent circle A. Circle B is obtained by shifting circle A down 2 units in the xy-plane. Which of the following equation represents circle B ?

a)  (x - 2)2 + (y - 1)2 = 49           b) x2 + (y - 3)2 = 49

c) (x + 2)2 + (y - 1)2 = 49           d)  x2 + (y + 1)2 = 49

Solution :

x2 + (y - 1)2 = 49

Obtaining circle B by shifting circle A by 2 units down, then 

x2 + (y - 1 - 2)2 = 49

x2 + (y - 3)2 = 49

Option b is correct.

Problem 15 :

(d − 30)(d + 30) − 7 = −7

What is a solution to the given equation?

Solution :

(d−30)(d+30) −7 = −7

(d− 302) −7 = −7

d− 900 −7 = −7

d= −7 + 900 + 7

d= 900

d = √900

d = -30 and 30

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More