Any one of the Algebraic identities will be useful to find factors of expression.
(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 - 2ab + b2
a2 - b2 = (a + b)(a - b)
a3 - b3 = (a - b)(a2 + ab + b2)
a3 + b3 = (a + b)(a2 - ab + b2)
Factorize each polynomial using algebraic identity.
Problem 1 :
w² - 4
Solution :
w² - 4 = w² - 2²
a² - b² = (a + b) (a - b)
w² - 2² = (w + 2) (w - 2)
Problem 2 :
a² - b²
Solution :
a² - b² = (a + b) (a - b)
Problem 3 :
9 - 16t²
Solution :
9 - 16t² = 3² - (4t)²
a² - b² = (a + b) (a - b)
3² - (4t)² = (3 + 4t) (3 - 4t)
Problem 4 :
8a³ - 27b³
Solution :
8a³ - 27b³ = (2a)³ - (3b)³
a³ - b³ = (a - b) (a² + ab + b²)
= (2a - 3b) [(2a)² + (2a)(3b) + (3b)²]
= (2a - 3b) (4a² + 6ab + 9b²)
Problem 5 :
m³ + n³
Solution :
a³ + b³ = (a + b) (a² - ab + b²)
m³ + n³ = (m + n) (m² - mn + n²)
Problem 6 :
125x³ - 64
Solution :
125x³ - 64 = (5x)³ - 4³
a³ - b³ = (a - b) (a² + ab + b²)
= (5x - 4) [(5x)² + (5x)(4) + (4)²]
= (5x - 4) (25x² + 20x + 16)
Problem 7 :
x² + 10x + 25
Solution :
(a + b)² = a² + 2ab + b²
x² + 10x + 25 = (x)² + 2(x)(5) + (5)²
= (x + 5)²
= (x + 5) (x + 5)
Problem 8 :
36u² - 12uv + v²
Solution :
(a - b)² = a² - 2ab + b²
36u² - 12uv + v² = (6u)² - 2(6u)(v) + (v)²
= (6u - v)²
= (6u - v) (6u - v)
Problem 9 :
4a² - 4a + 1
Solution :
(a - b)² = a² - 2ab + b²
4a² - 4a + 1 = (2a)² - 2(2a)(1) + 1²
= (2a - 1)²
= (2a - 1) (2a - 1)
Problem 10 :
25x² - 36
Solution :
25x² - 36 = (5x)² - (6)²
a² - b² = (a + b) (a - b)
(5x)² - (6)² = (5x + 6) (5x - 6)
Problem 11 :
If t > 0 and t2 − 4 = 0, what is the value of t ?
Solution :
t2 − 4 = 0
Using the algebraic identity,
t2 − 22 = 0
(t + 2)(t - 2) = 0
t = -2 and t = 2
Since the condition is t > 0, the value fo t is 2.
Problem 12 :
If x^a2/ x^b2 = 16, x > 1 and a + b = 2, what is the value of a - b ?
Solution :
x^a2/ x^b2 = 16
xa^2-b^2 = 16
Since the bases are equal, we can equate the powers.
a2 - b2 = 16
(a + b)(a - b) = 16
Applying the value of a + b, we get
2(a - b) = 16
a - b = 16/2
a - b = 8
So, the value fo a - b is 8.
Problem 13 :
x2 + y2 + 4x - 2y = -1
The equation of a circle in the xy-plane is shown above. What is the radius of the circle ?
a) 2 b) 3 c) 4 d) 9
Solution :
x2 + y2 + 4x - 2y = -1
x2 + 4x + y2 - 2y + 1 = 0
x2 + 2x(2) + 22 - 22+ y2 - 2y(1) + 12 - 12 + 1 = 0
(x + 2)2 + (y - 1)2 - 4 - 1 + 1 = 0
(x + 2)2 + (y - 1)2 = 4
(x + 2)2 + (y - 1)2 = 22
Comparing with,
(x - h)2 + (y - k)2 = r2
Radius = 2
option a is correct.
Problem 14 :
The equation
x2 + (y - 1)2 = 49
represent circle A. Circle B is obtained by shifting circle A down 2 units in the xy-plane. Which of the following equation represents circle B ?
a) (x - 2)2 + (y - 1)2 = 49 b) x2 + (y - 3)2 = 49
c) (x + 2)2 + (y - 1)2 = 49 d) x2 + (y + 1)2 = 49
Solution :
x2 + (y - 1)2 = 49
Obtaining circle B by shifting circle A by 2 units down, then
x2 + (y - 1 - 2)2 = 49
x2 + (y - 3)2 = 49
Option b is correct.
Problem 15 :
(d − 30)(d + 30) − 7 = −7
What is a solution to the given equation?
Solution :
(d−30)(d+30) −7 = −7
(d2 − 302) −7 = −7
d2 − 900 −7 = −7
d2 = −7 + 900 + 7
d2 = 900
d = √900
d = -30 and 30
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM