Any one of the Algebraic identities will be useful to find factors of expression.
(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 - 2ab + b2
a2 - b2 = (a + b)(a - b)
a3 - b3 = (a - b)(a2 + ab + b2)
a3 + b3 = (a + b)(a2 - ab + b2)
Factorize each polynomial using algebraic identity.
Problem 1 :
36k² - 1
Solution :
36k² - 1 = (6k)² - 1²
a² - b² = (a + b) (a - b)
(6k)² - 1² = (6k + 1) (6k - 1)
Problem 2 :
x² - 9y²
Solution :
x² - 9y² = x² - (3y)²
a² - b² = (a + b) (a - b)
x² - (3y)² = (x + 3y) (x - 3y)
Problem 3 :
25m² - n²
Solution :
25m² - n² = (5m)² - n²
a² - b² = (a + b) (a - b)
(5m)² - n² = (5m + n) (5m - n)
Problem 4 :
8r³ - 729
Solution :
8r³ - 729 = 8r³ - 9³
a³ - b³ = (a - b) (a² + ab + b²)
8r³ - 9³ = (8r - 9) [(8r)² + (8r)(9) + 9²]
= (8r - 9) (64r² + 72r + 81)
Problem 5 :
p³ - 1000q³
Solution :
p³ - 1000q³ = p³ - (10q)³
a³ - b³ = (a - b) (a² + ab + b²)
p³ - (10q)³ = (p - 10q) [(p)² + (p)(10q) + (10q)²]
= (p - 10q) (p² + 10pq + 100q²)
Problem 6 :
27c³ + 125d³
Solution :
27c³ + 125d³ = (3c)³ + (5d)³
a³ + b³ = (a + b) (a² - ab + b²)
(3c)³ + (5d)³ = (3c + 5d) [(3c)² - (3c)(5d) + (5d)²]
= (3c + 5d) (9c² - 15cd + 25d²)
Problem 7 :
64y³- 216
Solution :
64y³- 216 = (4y)³ - 6³
a³ - b³ = (a - b) (a² + ab + b²)
(4y)³ - 6³ = (4y - 6) [(4y)² + (4y)(6) + 6²]
= (4y - 6) (16y² + 24y + 36)
Problem 8 :
36y² + 84y + 49
Solution :
(a + b)² = a² + 2ab + b²
36y² + 84y + 49 = (6y)² + 2(6y)(7) + 7²
= (6y + 7)²
= (6y + 7) (6y + 7)
Problem 9 :
h² + 4h + 4
Solution :
(a + b)² = a² + 2ab + b²
h² + 4h + 4 = h² + 2(h)(2) + 2²
= (h + 2)²
= (h + 2) (h + 2)
Problem 10 :
z² - 8z + 16
Solution :
(a - b)² = a² - 2ab + b²
z² - 8z + 16 = z² - 2(z)(4) + 4²
= (z - 4)²
= (z - 4) (z - 4)
Problem 11 :
25a2 - 9b2
Solution :
= 25a2 - 9b2
= (5a)2 - (3b)2
= (5a + 3b) (5a - 3b)
Problem 12 :
a2 - 81(b - c)2
Solution :
= a2 - 81(b - c)2
= a2 - 92(b - c)2
= a2 - 9(b - c)2
= (a + 9(b - c)) (a - 9(b- c))
= (a + 9b - 9c) (a - 9b + 9c)
Problem 13 :
50a3 - 2a
Solution :
= 50a3 - 2a
= 2a (25a2 - 1)
= 2a (52a2 - 1)
= 2a ((5a)2 - 12)
= 2a (5a + 1)(5a - 1)
Problem 14 :
3a5 - 108a3
Solution :
= 3a5 - 108a3
Factoring 3a3, we get
= 3a3 (a2 - 36)
= 3a3 (a2 - 62)
= 3a3 (a + 6)(a - 6)
Problem 15 :
a4 - 1
Solution :
= a4 - 1
= (a2)2 - (12)2
= (a2 + 1) (a2 - 1)
= (a2 + 1) (a2 - 12)
= (a2 + 1) (a + 1)(a - 1)
Problem 16 :
(a + b)3 - a - b
Solution :
= (a + b)3 - a - b
= (a + b)(a2 - ab + b2) - (a + b)
= (a + b)[a2 - ab + b2 - 1]
Problem 16 :
4a2 - (4b2 + 4 bc + c2)
Solution :
= 4a2 - (4b2 + 4 bc + c2)
= 4a2 - (22b2 + 2(2b)c + c2)
= 4a2 - [(2b)2 + 2(2b)c + c2]
= 4a2 - [2b + c]2
= 22a2 - [2b + c]2
= (2a)2 - [2b + c]2
(2a + 2b + c) (2a - 2b - c)
Problem 17 :
a2 - b2 - (a + b)2
Solution :
= a2 - b2 - (a + b)2
= (a + b)(a - b) - (a + b)2
= (a + b)(a - b) - (a + b)(a + b)
Factoring (a + b), we get
= (a + b)(a - b - (a + b))
= (a + b)(a - b - a - b)
= (a + b)(-2 b)
= -2b(a + b)
Problem 18 :
a3 + 27b3
Solution :
= a3 + 27b3
= a3 + 33b3
= a3 + (3b)3
= (a + 3b)(a2 - ab + (3b)2)
= (a + 3b)(a2 - ab + 9b2)
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM